Advances in Virus Research

Advances in Virus Research (eBook)

eBook Download: PDF | EPUB
2007 | 1. Auflage
292 Seiten
Elsevier Science (Verlag)
978-0-08-055221-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
137,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Published since 1953, Advances in Virus Research covers a diverse range of in-depth reviews providing a valuable overview of the current field of virology.
In 2004, the Institute for Scientific Information released figures showing that the series has an Impact Factor of 2.576, with a half-life of 7.1 years, placing it 11th in the highly competitive category of Virology.
Published since 1953, Advances in Virus Research covers a diverse range of in-depth reviews providing a valuable overview of the current field of virology. In 2004, the Institute for Scientific Information released figures showing that the series has an Impact Factor of 2.576, with a half-life of 7.1 years, placing it 11th in the highly competitive category of Virology.

Cover 1
Contents 6
Chapter 1: Viruses, Vectors, and Vegetation: An Autobiography 11
I. From Childhood in Europe to America 11
II. Brooklyn Botanic Garden 15
III. Virus Nomenclature and Classification 23
IV. Cold Spring Harbor 24
V. The Cadang-Cadang Disease 26
VI. Dark Clouds on the Horizon 27
VII. Insect Viruses and Cell Culture 27
VIII. Electron Microscopy 31
IX. Books 32
X. International Connections 34
Acknowledgments 36
References 37
Books 39
Chapter 2: Honey Bee Viruses 43
I. Introduction 44
II. Common Honey Bee Viruses 45
A. Deformed wing virus 45
B. Sacbrood virus 47
C. Black queen cell virus 48
D. Kashmir bee virus 49
E. Acute bee paralysis virus 51
F. Chronic bee paralysis virus 52
III. Taxonomy 53
A. Virion properties 53
B. Genome organization and classification 55
IV. Transmission Modes 59
A. Horizontal transmission 60
B. Vertical transmission 65
C. Discussion 66
V. Pathogenesis 68
A. Causal relationship between a virus and a disease 69
B. Tissue tropism 69
C. Host range 71
VI. Host Defense Mechanisms 73
A. Colony-level defense 74
B. Individual-level defense 76
VII. Management of Virus Infections 79
VIII. Future Directions 81
Acknowledgments 82
References 82
Chapter 3: Use of Functional Genomics to Understand Influenza-Host Interactions 91
I. Introduction 92
II. Model Systems of Influenza A Infection Used in Functional Genomics 93
A. Cell culture models 93
B. Murine models 96
C. Nonhuman primate models 100
D. New diagnostic approaches 103
III. Conclusions 105
Acknowledgments 82
References 106
Chapter 4: A Guide to Viral Inclusions, Membrane Rearrangements, Factories, and Viroplasm Produced During Virus Replication 111
I. Introduction 113
II. Viroplasm, Virosomes, Factories, and Inclusions 114
III. Membrane Rearrangements Occurring During the Replication of the Positive-Stranded RNA Viruses 114
A. Regulation of membrane traffic in the early secretory pathway 116
B. Picornavirus replication induces numerous membrane vesicles 119
C. Alphaviruses produce membrane invaginations and spherules 127
D. The Flaviviridae replicate in vesicular packets and membraneous webs 129
E. The Nidovirales replicate in association with double-membraned vesicles 132
IV. Virus Factories and Inclusion Bodies Generated by Large DNA Viruses 134
A. Cytoplasmic virus factories formed by large cytoplasmic DNA viruses 134
V. Herpesviruses Induce Nuclear Inclusions and Cytoplasmic Assembly Sites 155
A. Herpesviruses 155
B. Herpesvirus replication generates inclusions in the nucleus 156
C. Cytoplasmic inclusions form during late stages of herpesvirus tegumentation: The cytoplasmic assembly compartment 160
VI. Nuclear Inclusions Are Formed by Small DNA Viruses 162
A. Adenovirus 162
B. Nuclear inclusions formed during polyomavirus and papillomavirus infection 164
VII. Virus Factories and Inclusions Formed by RNA Viruses 165
A. Reoviruses 165
B. Inclusions formed during arenavirus infection 169
C. Inclusions formed during rabies virus infection 169
VIII. Conclusions 170
References 171
Chapter 5: Parvoviral Host Range and Cell Entry Mechanisms 193
I. Introduction to the Viruses 194
A. The family Parvoviridae 194
B. The genus Parvovirus 196
II. Structure of a Uniquely Dense and Compact Virion 198
A. Rugged 260 Aring protein capsids with T = 1 icosahedral symmetry 198
B. Linear single-stranded DNA genomes with palindromic telomeres 200
C. Creating and expressing transcription templates 202
III. Recognizing the Target: Cell Surface Receptors and Viral Host Range 203
A. The MVM model: Glycan-specific interactions around the twofold symmetry axes 205
B. The FPV/CPV model: Engaging the transferrin receptor at the threefold symmetry axes 211
IV. Breaching the Outer Barrier: To the Cytosol and Beyond 215
A. Structural transitions in the virion induced in vitro 216
B. Essential elements in the VP1-specific entry peptide 222
C. Endocytosis, vacuolar trafficking, and structural transitions in vivo 226
D. From cytosol to nucleus 231
E. Waiting for S-phase: Cryptic versus productive infection 233
Acknowledgments 82
References 82
Chapter 6: Viral Stress-Inducible Genes 243
List of Abbreviations 244
I. Introduction 245
II. Signaling Pathways Leading to VSIG Induction 246
A. Signaling by dsRNA 249
III. Inhibition of Translation by Proteins Encoded by VSIGs 251
A. The P56 family of proteins 252
B. 2'-5' Oligoadenylate synthetases 256
C. PKR/PACT 258
IV. Viral Evasion of VSIG Expression and Function 261
A. Inhibition of IFN synthesis and VSIG induction 263
B. Inhibition of IFN signaling 264
Acknowledgments 266
References 266
Index 275

Honey Bee Viruses


Yan Ping Chen1,*; Reinhold Siede ,judy.chen@ars.usda.gov    * USDA‐ARS, Bee Research Laboratory, Beltsville, Maryland 20705
† Landesbetrieb Landwirtschaft Hessen, Bieneninstitut Kirchhain, 35274 Kirchhain, Germany
‡ Institute of Virology, Justus Liebig University, 35392 Giessen, Germany
1 To whom correspondence should be addressed.

Abstract


Viruses are significant threats to the health and well‐being of the honey bee, Apis mellifera. To alleviate the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Although knowledge of honey bee viruses has been accumulated considerably in the past three decades, a comprehensive review to compile the various aspects of bee viruses at the molecular level has not been reported. This chapter summarizes recent progress in the understanding of the morphology, genome organization, transmission, epidemiology, and pathogenesis of honey bee viruses as well as their interactions with their honey bee hosts. The future prospects of research of honey bee viruses are also discussed in detail. The chapter has been designed to provide researchers in the field with updated information about honey bee viruses and to serve as a starting point for future research.

I Introduction


The honey bee, Apis mellifera L. (Hymenoptera: Apidae), is found all over the world and plays an important role in the global economy by assisting in the pollination of a wide variety of food crops and by producing honey, beeswax, pollen, propolis, royal jelly, and other hive products. To ensure an adequate supply of bees for the pollination of agricultural crops and the production of hive products, a healthy and vigorous population of honey bees will be essential. However, like other animals, honey bees are inevitably subject to infection by a wide variety of pathogens that are responsible for significant colony losses. Among honey bee pathogens, viruses pose one of the major threats to the health and well‐being of honey bees and have caused serious concerns for researchers and beekeepers.

Viruses were first identified as a new class of pathogens infecting honey bees when a US scientist, Dr. White, discovered that a filterable agent from diseased bee larvae could cause sacbrood disease in the honey bee (White, 1913). Since then, at least 18 viruses have been reported to infect honey bees worldwide (Allen and Ball, 1996; Ellis and Munn, 2005). Although knowledge of honey bee viruses is still limited compared to that of other well‐studied insect viruses, such as baculoviruses, understanding of virus infections in honey bees has grown considerably over the last three decades and a body of literature dealing with bee virus identification, physiochemical properties, natural history, transmission, incidence, and pathology has been accumulated. In this chapter, we describe recent progress in understanding morphology, genome organization, transmission, epidemiology, and pathogenesis of honey bee viruses as well as their interactions with their honey bee host. Infections of viruses in honey bees have been reviewed previously. The main goal of this chapter is to update previous findings with more recent work relating to the molecular biology of the honey bee viruses, however, some main features of earlier reviews: Bailey, 1976, 1981, 1982a; Bailey and Ball, 1991; Ball, 1996; Ball and Bailey, 1991, 1997.

II Common Honey Bee Viruses


Viruses could attack at different developing stages and castes of the honey bees, including eggs, larvae, pupae, adult worker bees, adult drones, and queen of the colonies. Although bee viruses usually persist as inapparent infections and cause no overt signs of disease, they can dramatically affect honey bee health and shorten the lives of infected bees under certain conditions (Ball and Allen, 1988; Martin, 2001). Of 18 viruses identified to attack honey bees, six viruses, namely, Deformed wing virus (DWV), Black queen cell virus (BQCV), Sacbrood virus (SBV), Kashmir bee virus (KBV), Acute bee paralysis virus (ABPV), and Chronic bee paralysis virus (CBPV) are the most common infections and have been objects of active research currently.

A Deformed wing virus


DWV was first isolated from diseased adult bees in Japan (Bailey and Ball, 1991). The occurrence and distribution of DWV has since been worldwide. Except for Oceania, the infection of DWV so far has been reported in Europe, North America, South America, Africa, Asia, and the Middle East (Allen and Ball, 1996; Antúnez et al., 2006; Ellis and Munn, 2005). The infection of DWV has also been identified in A. cerana in China (Bailey and Ball, 1991).

DWV is one of a few bee viruses that cause well‐defined disease symptoms in infected bees. Typical disease symptoms of DWV infection include shrunken, crumpled wings, decreased body size, and discoloration in adult bees. However, the mechanism by which the DWV causes the morphological deformities of the infected hosts is unclear. Aside from the adult stage, DWV infection is also detected in other stages of bee development, including egg, larvae, and pupae. When pupae at the normally multiplies slowly and rarely kills the pupae, instead mostly causing deformity and early death in newly emerged adult bees. Adult honey bees infected with DWV usually appear normal but are believed to have a reduction in life span (Bailey and Ball, 1991; Ball and Bailey, 1997; Kovac and Crailsheim, 1988).

DWV appears to be the most prevalent infection in A. mellifera in recent years. Our 5‐year field survey carried out in Beltsville, MD showed that DWV infection occurred in 100% of the apiaries investigated (Y. P. C., unpublished observation). Similar results were reported previously by Tentcheva et al. (2004b) who observed that DWV was detected in over 97% of French apiaries when the adult bee population was examined. A study on the prevalence and distribution pattern of viruses in Austria demonstrated that DWV was present in 91% of tested bee samples (Berényi et al., 2006). Although high prevalence of DWV is not geographically related, some seasonal variation in virus incidence was observed and the frequency of DWV infection in both adult bees and pupae increased considerably from summer to autumn during the year (Tentcheva et al., 2004a,b). The striking high incidence of DWV infection in honey bees obtained from these studies indicate that DWV is prevalent over a wide range of geographic locations and is likely to become an important cause of mortality in honey bee colonies whenever a viral disease outbreak occurs, and warrants further investigation in the epidemiology and pathogenesis of this pathogen.

Bee colonies infected with DWV are often found to be associated with the infestation of a parasitic mite, Varroa destructor (Anderson and Trueman, 2000). Both laboratory and field studies showed that the varroa mite is an effective vector of the DWV (Ball and Allen, 1988; Bowen‐Walker et al., 1999; Martin et al., 1998; Nordström, 2003; Nordström et al., 1999; Shen et al., 2005b). Varroa mites acquire the virus from infected bees and transmit it to uninfected bees, which either develop morphological deformities or die after the mites feed on them for a period of time. Studies of virus status in varroa mites showed that DWV was present in 100% of varroa mites collected from Thailand (Chantawannakul et al., 2006) and that varroa mites appeared to be DWV positive in 100% of French apiaries (Tentcheva et al., 2004b). Evaluation of DWV infection in individual bees showed that DWV was detected in 69% of bees collected from mite‐infested colonies in Poland (Topolska et al., 1995), and in over 90% of bees from mite‐infested colonies in England (Ball, 2001). The high frequency of DWV in mites and mite‐infested bee colonies suggests that the significant increase in prevalence of DWV infection in recent years is likely associated with the worldwide infestation of varroa mites in honey bees. It also suggests that the varroa mite may play a major role in colony collapse due to the outbreak of viral disease.

B Sacbrood virus


SBV is the most widely distributed of all honey bee viruses. Since its first identification in the United States in 1913 (White, 1913), infection of SBV has been found on every continent where A. mellifera honey bees are present (Allen and Ball, 1996; Bradbear, 1988; Ellis and Munn, 2005).

SBV attacks both brood and adult stages of bees, but larvae about 2‐day old are most susceptible to SBV infections (Ball and Bailey, 1997). SBV affects adult bees without causing obvious signs of disease, but the infected adult bees may have a decreased life span (Bailey, 1969; Bailey and Fernando, 1972). The initial spread of SBV within a colony occurs when nurse bees become infected while removing larvae killed by SBV. Virus particles accumulate in the hypopharyngeal...

Erscheint lt. Verlag 18.9.2007
Mitarbeit Herausgeber (Serie): Karl Maramorosch, Aaron J. Shatkin
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Medizin / Pharmazie Allgemeines / Lexika
Medizin / Pharmazie Medizinische Fachgebiete Innere Medizin
Naturwissenschaften Biologie Mikrobiologie / Immunologie
Technik
ISBN-10 0-08-055221-8 / 0080552218
ISBN-13 978-0-08-055221-7 / 9780080552217
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 21,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 6,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Aus Klinik und Praxis

von Torben Pottgießer; Stefanie Ophoven; Elisabeth Schorb

eBook Download (2019)
Urban & Fischer Verlag - Lehrbücher
38,99