Progress in Medicinal Chemistry

Progress in Medicinal Chemistry (eBook)

eBook Download: PDF | EPUB
2009 | 1. Auflage
264 Seiten
Elsevier Science (Verlag)
978-0-08-095086-0 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
155,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Annual Review of Eclectic Developments in Medicinal Chemistry



*Presents the latest research in the field of drug discovery *Publishes on a twice yearly basis to bring you the most innovative updates in medicinal chemistry *Available as an online resource via ScienceDirect


Progress in Medicinal Chemistry provides a review of eclectic developments in medicinal chemistry. This volume continues in the serial's tradition of providing an insight into the skills required of the modern medicinal chemist; in particular, the use of an appropriate selection of the wide range of tools now available to solve key scientific problems. Presents the latest research in the field of drug discovery Publishes on a twice yearly basis to bring you the most innovative updates in medicinal chemistry Available as an online resource via ScienceDirect

1

Medicinal Chemistry by the Numbers: The Physicochemistry, Thermodynamics and Kinetics of Modern Drug Design


Graham F. Smith    Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA

Publisher Summary


This chapter discusses key aspects of modern physicochemistry, thermodynamics, and kinetics that lead to good drug design. The classical view of medicinal chemistry is to work with the lock and key approach. The small molecule key is designed to fit the lock that is the target enzyme or receptor. The chapter explains the concept of binding energy, enthalpy, entropy, thermodynamic signatures, and ligand efficiency. Binding kinetics is also referred to as slow offset, slow off-rate, slow dissociation, insurmountable antagonism, ultimate physiological inhibition, tight binding and non-equilibrium blockade. The binding kinetics is described based on the theory of slow offset, kinetic maps, and various case studies. The chapter accounts for improved pharmacodynamics and the application of binding kinetics to kinases. Physical chemistry, in the form of the balance of binding energy contributions and target on- and off-rates, also plays a key part in delivering a good drug from a lead series. The physicochemistry of molecules can often indicate which molecules not to make, but is less prescriptive of what should be synthesised. Additionally, sometimes the numbers just do not add up and the various parameters required to deliver the drug concept are not available within the chemotype under evaluation or perhaps not even in the vastness of chemical space.

INTRODUCTION


At the beginning of my career as a medicinal chemist my job seemed to me more like a mysterious dark art than a science. It appeared then that the experienced medicinal chemists had a more intuitive approach rather than a rigorous scientific approach to finding active molecules. My training in synthetic chemistry taught what could be made, but it was hard to see what should be made, in the absence of knowledge of the target structure to enable structure-based drug design. More recently, a number of rules and equations based on scientific fact and precedent have been developed, and these promote good compound design and a statistically greater chance of successful drug development. In this chapter are outlined key aspects of modern physicochemistry, thermodynamics and kinetics which lead to good drug design. For an aspiring chemist, the ability to articulate the specific reasons for designing the features of compounds demonstrates a true mastery of the medicinal chemistry art.

It takes around 10 years to train a synthetic chemist to be a medicinal chemist and en route it is necessary to learn and understand many of these guidelines and why they are important. The description of the principles in this chapter, and their limitations, is intended to accelerate this training and lead to even better drug design.

Medicinal chemists have sometimes seemed to be sceptical of the predictions and rules. It is the view of this author that these guidelines are backed by scientific fact and evidence and therefore ignoring them can be folly.

PHYSICOCHEMISTRY


The landmark papers in the area of physicochemistry came over 10 years ago from Pfizer's Chris Lipinski [1, 2]. His analysis of 2,243 Phase II drug-like compounds from the USAN and INN (United States Adopted Name, International Non-proprietary Name) named drugs databases yielded a guideline, called the ‘rule of 5’, which has been widely adopted by those designing orally bioavailable drugs. Put simply, it states that 90% of all bioavailable drugs have molecular weight less than 500 or LogP less than 5 or fewer than 5 H-bond donors and fewer than 10 H-bond acceptors. Lipinski stated that ‘poor absorption is more likely if’ these physicochemical limits are surpassed, however many people reacted strongly initially focusing largely on exceptions to the rule rather than embracing the spirit of the analysis and conclusions. In the years that have followed though, physicochemistry has become a mainstay of modern drug discovery, as evidenced by the fact that Lipinski's original paper has been cited over 2,204 times [3] to date.

DRUG-LIKE MOLECULAR PROPERTIES


Drug-like – rule of 5

In the decade that has followed Lipinski's first publication, a deeper understanding of probabilities and causes of the physicochemical contribution to drug-likeness has led to the refinement of the rule of 5, most notably by workers at Pfizer, AstraZeneca and GSK. The rule of 5 has become deeply intuitive to medicinal chemists and they now routinely use either cLogP versus activity, or molecular weight versus activity, plots as principle components of compound design. In fact Gleeson [4] has shown that molecular weight and cLogP are the two principle components in discriminating drug-like physicochemical properties. Other researchers have added to and refined the rule of 5 still further. Veber et al.[5] and Pickett et al.[6] from GSK showed that it was possible to conclude that fewer than 10 rotatable bonds and polar surface area (PSA) of less than 140 Å2 were both related to better oral bioavailability. Kelder [7] and others showed that for CNS penetration the physicochemistry ranges were more tightly defined than for general oral bioavailability and that a lower value of PSA (less than 70 Å2) was important. Norinder and Haeberlein [8] have also shown that a more subtle balance of physicochemical properties, derived from (N+O) – LogP, must be positive to achieve a high probability of blood–brain barrier penetration.

Lead-like – rule of 4

Teague [9], Oprea [10] and Hann [11, 12] proposed that the physicochemistry of drug leads should be more tightly defined than the original rule of 5 to allow for the seemingly inevitable increase in the values of physicochemical parameters in the progression from leads to development candidates. Thus a rule of 4 for project leads from sources such as HTS can be defined (Table 1.1).

Table 1.1

Drug-Like, Lead-Like and Fragment-Like Properties

Rule of 5 drugs <500 <5 <5 <10 <140 [1,5,6]
Rule of 4 leads <400 <4 <4 <8 <120 [911]
Rule of 3 fragments <300 <3 <3 <3 <60 [13]

Fragment-like – rule of 3

In recent years, the pursuit of lead-like properties by screening very small molecules to find weakly active hits, but having high ligand efficiency, has become widely adopted. This has popularly become known as fragment-based drug discovery (FBDD) and is the subject of several recent high-quality reviews [1417]. Congreve et al.[13] have defined a still tighter rule of 3 for molecules used as screening tools for FBDD which defines the smallest hit molecules that can be detected by specialist methods due to their low binding affinities.

These rules or guidelines now combine to signpost a sensible range of molecular weight and lipophilicity which should be tolerated at early stages of drug discovery. To go beyond these ranges at early stages of research when absorption, selectivity, toxicity and pharmacokinetics have yet to be addressed can easily lead to molecules that are non-optimisable at the later and more costly stages of pre-clinical research. Scheme 1.1 shows the well-known example of AT7519 (1) developed by Astex [18, 19] from a low molecular weight fragment (2). At each stage of its optimisation as a development candidate its properties obey the relevant rules from Table 1.1.

Scheme 1.1 The evolution of Astex PhII clinical candidate AT7519 (1) from fragment hit.

SHAPE


The classical view of medicinal chemistry is to work with the lock and key approach first postulated in 1894 by Emil Fischer. That is to say, design the small molecule key to fit the lock, which is the target enzyme or receptor. However, it is an oversimplification of both the lock and the key (target and receptor) to trust this analogy so far as to make important design decisions without confirmation by empirical means. René Magritte famously produced the picture ‘this is not a pipe’ (Figure 1.1). In the view of the author, medicinal chemists should hold this philosophical thought in mind when they use target structure to design small molecule inhibitors. Both protein and ligand are flexible objects that change shape dynamically under physiological conditions, and perhaps even more so when they interact with each other. So, any static picture of a protein does not robustly represent reality, as it does not usually show either the potential for movement or the multitude of water molecules that surround the protein or drug. Thus, very small differences in binding energy components, and flexibility in both the shape...

Erscheint lt. Verlag 15.11.2009
Mitarbeit Herausgeber (Serie): G. Lawton, David R. Witty
Sprache englisch
Themenwelt Medizin / Pharmazie Gesundheitsfachberufe
Medizin / Pharmazie Medizinische Fachgebiete Pharmakologie / Pharmakotherapie
Naturwissenschaften Chemie Organische Chemie
Technik
ISBN-10 0-08-095086-8 / 0080950868
ISBN-13 978-0-08-095086-0 / 9780080950860
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 1,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 10,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich