Advances in Cancer Research -

Advances in Cancer Research (eBook)

eBook Download: PDF | EPUB
2009 | 1. Auflage
160 Seiten
Elsevier Science (Verlag)
978-0-08-091226-4 (ISBN)
126,00 € inkl. MwSt
Systemvoraussetzungen
125,97 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Cancer Research provides invaluable information on the exciting and fast-moving field of cancer research. Here, once again, outstanding and original reviews are presented on a variety of topics, including nitric oxide-induced apoptosis in tumor cells, detection of minimal residual disease, immunity to oncogenetic human papilloma viruses, and modeling prostate cancer in the mouse.
Advances in Cancer Research provides invaluable information on the exciting and fast-moving field of cancer research. Here, once again, outstanding and original reviews are presented on a variety of topics, including nitric oxide-induced apoptosis in tumor cells, detection of minimal residual disease, immunity to oncogenetic human papillomavirus, and modeling prostate cancer in the mouse.

Front Cover 1
Advances in Cancer Research 4
Copyright 5
Contents 6
Contributors 8
Chapter 1: The Function, Proteolytic Processing, and Histopathology of Met in Cancer 10
I. Introduction 11
II. Oncogenic Properties of Met 12
III. Receptor Cross Talk 12
IV. Proteolytic Processing of Met 14
V. Nuclear Localization of Met 17
VI. Histopathology and Expression of Met in Cancer 18
VII. Met as a Therapeutic Target 23
VIII. Perspective 24
References 25
Chapter 2: Managing Tumor Angiogenesis: Lessons from VEGF-Resistant Tumors and Wounds 34
I. Angiogenesis 35
II. Vegf and Tumor Angiogenesis 36
III. Vegf and Recruitment of Epc in Tumor Angiogenesis 36
IV. Role of Bone Marrow-Derived Immune Cells in Angiogenesis and Tumor Progression 37
V. Limitations in Targeting Vegf 38
VI. Tumor Stage-Dependent Responses TVegf 39
VII. Multiple Angiogenic Factors Produced by the Tumor Microenvironment 40
VIII. Vegf Inhibition and Increased Tumor Aggressiveness 41
IX. Wound Angiogenesis 42
X. Vascular Regression 44
XI. Wound Fibroblasts 45
XII. Hox Genes in Wound and Tumor Angiogenesis 46
References 47
Chapter 3: The TRAIL to Targeted Therapy of Breast Cancer 52
I. Introduction 52
II. TRAIL and Its Receptors 54
III. TRAIL-Induced Apoptosis in Breast Cancer Cells 60
IV. Mechanisms Determining TRAIL Sensitivity in Breast Cancer Cells 64
V. Overcoming TRAIL Resistance 67
VI. Future Directions 73
Acknowledgments 73
References 73
Chapter 4: Hepatitis B Virus X Protein: Molecular Functions and Its Role in Virus Life Cycle and Pathogenesis 84
I. Introduction 84
II. Is HBx an Essential or Accessory Regulatory Protein for Virus Replication? 86
III. HBx: A Potential Candidate in HCC Development 88
IV. HBx: Structural and Biochemical Features 89
V. HBx Activities 92
VI. Conclusion 103
References 104
Chapter 5: Drosophila Myc 120
I. Introduction: The Myc/Max/Mxd network in vertebrates 120
II. The Myc/Max/Mnt network in flies 122
Acknowledgments 147
References 147
Index 154
Color Plate 158

Chapter 1 The Function, Proteolytic Processing, and Histopathology of Met in Cancer


Jason A. Hanna, Jennifer Bordeaux, David L. Rimm and Seema Agarwal
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
Abstract
The hepatocyte growth factor (HGF) and its receptor, the Met receptor tyrosine kinase, form a signaling network promoting cell proliferation, invasion, and survival in normal and cancer cells. Improper regulation of this pathway is attributed to many cancer types through overexpression, activating mutations, or autocrine loop formation. Many studies describe the localization of Met as membranous/cytoplasmic, but some studies using antibodies targeted to the C-terminal domain of Met report nuclear localization. This chapter seeks to highlight the histopathology and expression of Met in cancer and its association with clinicopathological characteristics. We also discuss recent studies of the proteolytic processing of Met and effects of the processing on the subcellular localization of Met. Finally, we comment on Met as a therapeutic target for cancer treatment.

I. Introduction

The hepatocyte growth factor receptor (Met) is a transmembrane receptor tyrosine kinase (RTK) primarily expressed in both epithelial and endothelial cells. Met is produced as a single-chain 170 kDa precursor, which is then proteolytically cleaved at a furin site to produce its ? (45 kDa) and ? (150 kDa) subunits linked by a disulfide bond. The ? subunit is highly glycosylated and entirely extracellular. The ? subunit has a large extracellular domain, the transmembrane domain, and the intracellular domain. The extracellular portion of the Met receptor, including the entire ? subunit, shares homology to semaphorins and is therefore termed the Sema domain. It is this Sema domain that is responsible for ligand binding. The intracellular domain of Met contains three functionally important regions, the juxtamembrane domain, the tyrosine kinase domain, and the multisubstrate docking site at the C-terminal tail. The juxtamembrane region contains a serine (985) that can be phosphorylated by PKC to downregulate the kinase activity of the receptor as well as a tyrosine (1003) where the ubiquitin ligase Cbl can bind and lead to Met polyubiquitination and subsequent degradation (Birchmeier et al., 2003 and Gentile et al., 2008).
Met is activated by the binding of its ligand, hepatocyte growth factor/scatter factor (HGF/SF), which then leads to the dimerization and autophosphorylation of the tyrosine residues (1230, 1234, 1235) within the activation loop of the tyrosine kinase domain. Subsequent phosphorylation of the C-terminal docking sites (tyrosines 1349 and 1356) of Met allows binding of downstream signaling molecules (many of which contain SH2 domains), including Grb2, Shc, Src, p85 subunit of PI3K, and Gab1. This leads to signal transduction through a number of pathways essential for an invasive growth program. In epithelial cells in vivo, this invasive growth program orchestrates cell spreading, cell–cell dissociation and an increase in motility. These processes together are known as cell “scattering,” and are morphologically similar to features of cells undergoing an epithelial–mesenchymal transition (Birchmeier et al., 2003). In addition the cells then migrate and settle in a new environment where they proliferate and generate new tubular structures (Gentile et al., 2008). All of these features of Met activation in vivo can be simulated in vitro by stimulating MDCK cells with HGF. Classical Met/HGF signaling promotes this invasive growth phenotype of cell survival and proliferation; however, a recent study has also demonstrated that caspase cleavage leads to the formation of a 40 kDa intracellular fragment of Met that was also proapoptotic through an unknown mechanism (Tulasne and Foveau, 2008).

II. Oncogenic Properties of Met

Under physiological conditions HGF secreted by mesenchymal cells acts on epithelial cells expressing the Met receptor. Both HGF and Met are essential for controlling processes during mammalian embryogenesis and as a result transgenic mice lacking either HGF or Met die by embryonic day 16.5 with defects in liver, tongue, and diaphragm, failure of skeletal muscle progenitor cells to migrate to limbs, as well as defects in branching morphogenesis of the lungs and kidneys (Birchmeier et al., 2003 and Schmidt et al., 1995). In the adult, upregulated HGF and Met is observed after injury to liver, kidney, or heart and is important in wound healing of the skin as well as liver regeneration (Birchmeier et al., 2003, Borowiak et al., 2004 and Chmielowiec et al., 2007). In addition to Met's functions in these normal processes, its ability to induce proliferation, motility, and invasion can also contribute to the development of cancer. Some tumors express both HGF and Met leading to an autocrine loop where secreted HGF causes the constitutive activation of Met and as a consequence, enhances tumor cell growth and metastasis. Met can also be activated independent of HGF stimulation as a result of overexpression, abnormal processing, absence of negative regulators such as Cbl, expression of the TPR–MET gene fusion product formed due to chromosomal rearrangement, or a number of activating mutations in the juxtamembrane and kinase domains that have been identified in renal papillary carcinoma, lung cancer, hepatocellular carcinoma, and gastric cancer (Danilkovitch-Miagkova and Zbar, 2002, Gentile et al., 2008, Lee et al., 2000, Ma et al., 2003, Park et al., 1986 and Peschard et al., 2001).

III. Receptor Cross Talk

Met is known to interact and cross talk with several membrane proteins, including a number of RTKs (Fig. 1). One of the first RTKs identified to interact with Met was the recepteur d'origine nantais (Ron). Ron is a RTK with significant homology to Met and is activated by binding of its ligand macrophage stimulating protein (MSP) (Thomas et al., 2007). Met and Ron have been shown to interact before ligand induced dimerization and are able to transphosphorylate each other. In addition, the expression of an inactive Ron receptor was able to suppress the transforming capabilities of activating Met mutants suggestive of a dominant negative role (Follenzi et al., 2000). In a cohort of ovarian cancers, Ron and Met were found to be coexpressed in 42% of the specimens. In addition, coactivation of both receptors in ovarian cancer cell lines synergistically enhanced the motility and invasiveness of the cells (Maggiora et al., 2003). Ron and Met coexpression associate with shorter survival in cancer implying that the interaction and subsequent activation of both Ron and Met may be involved in promoting distant metastasis and recurrence in many tumor types (Cheng et al., 2005 and Lee et al., 2005).
Fig. 1
Met cross talk with other membrane receptors. Met interacts with the cell adhesion receptors E-cadherin, CD44v6, ?6?4 integrin, members of the Plexin B family, the death receptor Fas, and other receptor tyrosine kinases such as Ron and ErbB family members.
Met and Ron also share many structural similarities in the extracellular domain with the Plexin B family of semaphorin receptors. They all contain the ?500 amino acid conserved Sema, the ?80 amino acid cysteine rich Met-related sequence, and four copies of an Ig domain (Gherardi et al., 2004). Giordano et al. first reported the ability of Plexins of the B family to transactivate Met and Ron in the absence of HGF/MSP when stimulated with their semaphorin ligands as a mechanism to activate the invasive growth program (Conrotto et al., 2004 and Giordano et al., 2002). This interaction was also found to have proangiogenic properties in endothelial cells (Conrotto et al., 2005).
Met also interacts with the v6 splice variant of CD44 to associate Met with the actin cytoskeleton via the Ezrin, radixin and moesin (ERM) proteins, and for the proper assembly and activation of the downstream Ras/MAPK pathway (Orian-Rousseau et al., 2002 and Orian-Rousseau et al., 2007). Met interaction with the laminin receptor, ?6?4 integrin, leads to phosphorylation of ?6?4 integrin which then recruits and amplifies signaling of the Ras–Src signaling cascade (Bertotti et al., 2005, Bertotti et al., 2006 and Trusolino et al., 2001). Met interacts with the death receptor Fas in a ligand independent manner and prevents Fas ligand binding, thereby inhibiting Fas activation and induction of Fas promoted apoptosis (Wang et al., 2002). HGF binding to Met however displaces Met from Fas which can then induce downstream Met signaling promoting cell curvival. Alternatively, HGF-induced disassociation of Fas from Met may provide a proapoptotic effect allowing the FasL to bind the free Fas. In addition, Met is shown to play an additional proapoptotic role in a caspase dependent manner (Foveau et al., 2007). Finally, we and others have shown that E-cadherin interacts with Met at the plasma membrane to optimize the localization of the receptor for ligand stimulation (Hiscox and Jiang, 1999 and Reshetnikova et al., 2007).
Met also interacts with...

PDFPDF (Adobe DRM)
Größe: 3,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Antibiotika, Virostatika, Antimykotika, Antiparasitäre Wirkstoffe

von Hans-Reinhard Brodt; Achim Hörauf; Michael Kresken …

eBook Download (2023)
Thieme (Verlag)
164,99
Mit den neuen Preisen vom 1.10.2023

von Peter M. Hermanns; Enrico Schwartz; Katharina von Pannwitz

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
59,99