Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics -

Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics (eBook)

Mohamed Henini (Herausgeber)

eBook Download: PDF
2011 | 1. Auflage
864 Seiten
Elsevier Science (Verlag)
978-0-08-056047-2 (ISBN)
Systemvoraussetzungen
180,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included.

Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book will provide an excellent starting point for workers entering the field and a useful reference to the nanostructured materials research community. It will be useful to any scientist who is involved in nanotechnology and those wishing to gain a view of what is possible with modern fabrication technology.

Mohamed Henini is a Professor of Applied Physics at the University of Nottingham. He has authored and co-authored over 750 papers in international journals and conference proceedings and is the founder of two international conferences. He is the Editor-in-Chief of Microelectronics Journal and has edited three previous Elsevier books.

Key Features:
- Contributors are world leaders in the field
- Brings together all the factors which are essential in self-organisation of quantum nanostructures
- Reviews the current status of research and development in self-organised nanostructured materials
- Provides a ready source of information on a wide range of topics
- Useful to any scientist who is involved in nanotechnology
- Excellent starting point for workers entering the field
- Serves as an excellent reference manual
The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book will provide an excellent starting point for workers entering the field and a useful reference to the nanostructured materials research community. It will be useful to any scientist who is involved in nanotechnology and those wishing to gain a view of what is possible with modern fabrication technology. Mohamed Henini is a Professor of Applied Physics at the University of Nottingham. He has authored and co-authored over 750 papers in international journals and conference proceedings and is the founder of two international conferences. He is the Editor-in-Chief of Microelectronics Journal and has edited three previous Elsevier books. Contributors are world leaders in the field Brings together all the factors which are essential in self-organisation of quantum nanostructures Reviews the current status of research and development in self-organised nanostructured materials Provides a ready source of information on a wide range of topics Useful to any scientist who is involved in nanotechnology Excellent starting point for workers entering the field Serves as an excellent reference manual

Front Cover 1
Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics 4
Copyright Page 5
Contents 6
Preface 20
Chapter 1 Self-organized Quantum Dot Multilayer Structures 22
1.1 Introduction 22
1.2 Mechanisms for interlayer correlation formation 23
1.3 Strain-field interactions in multilayer structures 25
1.3.1 The isotropic point-source model 26
1.3.2 The effect of elastic anisotropy 28
1.3.3 Near-field strain interactions 33
1.3.4 Stacking conditions and replication angles 37
1.4 Comparison with experimental results 42
1.4.1 Vertically aligned dots 42
1.4.2 Fcc-like dot stacking 43
1.4.3 Anticorrelated and staggered dot stackings 44
1.4.4 Oblique replication on high-indexed surfaces 47
1.5 Monte Carlo growth simulations 48
1.6 InGaAs/GaAs multilayers 51
1.6.1 Pairing probability as a function of spacer thickness 52
1.6.2 Lateral ordering 53
1.6.3 Sizes, shapes and critical wetting layer thickness 54
1.6.4 Photoluminescence 55
1.7 Ordering in SiGe/Si dot superlattices 55
1.8 PbSe/PbEuTe dot superlattices 57
1.8.1 Stackings as a function of spacer thickness 59
1.8.2 Lateral ordering 60
1.8.3 Interlayer correlations as a function of dot size 65
1.8.4 Phase diagram for vertical and lateral dot ordering 66
1.9 Other mechanisms for interlayer correlation formation 69
1.9.1 Morphologic correlations 69
1.9.2 Correlations induced by composition 70
1.10 Summary and outlook 72
Acknowledgements 72
Chapter 2 InAs Quantum Dots on Al[sub(x)]Ga[sub(1–x)]As Surfaces and in an Al[sub(x)]Ga[sub(1–x)]As Matrix 83
2.1 Introduction 83
2.2 Quantum dot formation 83
2.2.1 Strained heteroepitaxial growth 83
2.2.2 Quantum dot nucleation on Al[sub(x)]Ga[sub(1–x)]As surfaces 85
2.2.3 Calibrating InAs growth rate 87
2.3 Control of quantum dot size and density 88
2.3.1 QD nucleation and growth 89
2.4 Changing the confining matrix 90
2.5 Overgrowth of quantum dots 91
2.5.1 QD characterization 93
2.5.2 Inhomogeneous broadening of QD size 94
2.6 Applications 96
2.6.1 Quantum dot detectors 96
2.6.2 Quantum dot quantum-cascade emitters 98
Chapter 3 Optical Properties of In(Ga)As/GaAs Quantum Dots for Optoelectronic Devices 105
3.1 Introduction 105
3.2 Growth of In(Ga)As/GaAs QDs 105
3.3 Stacked QD layers 109
3.4 Energy states in QDs 111
3.5 Single QD spectroscopy 120
3.6 Quantum dot lasers 123
3.7 Vertical and resonant cavity structures 130
3.8 Semiconductor optical amplifiers 131
3.9 Single photon sources 133
3.10 Entangled photon sources 135
3.11 Spin-LEDs and the potential for QDs in spintronic devices 137
3.12 Conclusions 142
Acknowledgements 142
Chapter 4 Cavity Quantum Electrodynamics with Semiconductor Quantum Dots 153
4.1 Introduction 153
4.2 Basics of cavity quantum electrodynamics 154
4.2.1 Optical confinement and light–matter interaction 154
4.2.2 Spontaneous emission control – Purcell effect 155
4.2.3 Strong coupling regime 158
4.3 Implementation of cavity quantum electrodynamics in the solid state 159
4.3.1 The resonator: a semiconductor microcavity 159
4.3.2 The emitter: a single semiconductor quantum dot 161
4.4 The weak coupling regime 163
4.4.1 Spontaneous emission inhibition 163
4.4.2 Spontaneous emission acceleration 164
4.5 The strong coupling regime 166
4.5.1 First demonstrations of strong coupling regime 166
4.5.2 Some perspectives 169
4.6 Towards a deterministic cavity–dot coupling 170
4.6.1 Spatial tuning 170
4.6.2 Spectral tuning 171
4.7 Applications of solid-state cavity quantum electrodynamics 171
4.7.1 Efficient single photon source: possibilities and limitations 172
4.7.2 Indistinguishable single photon sources 173
4.7.3 Proposal for entangled photons sources 175
4.7.4 Proposal for ultra-low threshold lasers 176
4.7.5 Possible applications for quantum information processing 178
4.8 Summary and conclusions 178
Acknowledgements 179
Chapter 5 InAs Quantum Dot Formation Studied at the Atomic Scale by Cross-sectional Scanning Tunnelling Microscopy 186
5.1 Introduction 186
5.1.1 Quantum dot formation 186
5.1.2 Cross-sectional scanning tunnelling microscopy (X-STM) 186
5.2 Formation of the wetting layer 192
5.3 Dependence of the QD structural properties on the substrate material (GaAs vs AlAs) 197
5.4 Capping process of InAs quantum dots 200
5.4.1 Capping temperature and growth interruptions 200
5.4.2 Capping with different materials 204
5.4.3 Double capping process 214
5.5 Conclusions 217
Acknowledgements 218
Chapter 6 Growth and Characterization of Structural and Optical Properties of Polar and Non-polar GaN Quantum Dots 222
6.1 Introduction 222
6.2 Epitaxial growth of nitrides 223
6.2.1 Generalities 223
6.2.2 Growth of GaN QDs 226
6.3 Structural properties of GaN QDs 231
6.3.1 [0001] GaN QDs 231
6.3.2 [1120] GaN QDs 232
6.4 Vertical correlation of stacked QDs 235
6.5 X-ray diffraction analysis of GaN QDs 236
6.6 Optical properties of single GaN QDs 238
6.6.1 Photoluminescence of ensembles of non-polar GaN QDs 238
6.6.2 Single dot PL – spectral diffusion and temperature broadening 240
6.6.3 Phonon coupling and oscillator strength: the localization hypothesis 243
6.7 Rare earth doping of GaN QDs 247
6.8 Conclusion 248
Acknowledgements 248
Chapter 7 Optical and Vibrational Properties of Self-assembled GaN Quantum Dots 251
7.1 Introduction 251
7.2 Growth and structural characterization 252
7.2.1 Growth and structural properties 252
7.2.2 Strain field distribution 257
7.3 Raman scattering 261
7.3.1 Vibrational modes in bulk GaN and AlN 261
7.3.2 Vibrational modes in GaN QDs 262
7.3.3 Non-resonant Raman scattering 263
7.3.4 Resonant Raman scattering 266
7.3.5 QDs grown along non-polar directions 268
7.4 Luminescence 269
7.4.1 Confinement effects 270
7.4.2 Electric field effects: quantum-confined Stark effect 273
7.4.3 Electric field effects on the exciton dynamics 279
7.4.4 Single quantum dot studies 281
7.4.5 QDs grown along non-polar directions 284
7.5 Intraband absorption 285
Acknowledgements 287
Chapter 8 GaSb/GaAs Quantum Nanostructures by Molecular Beam Epitaxy 292
8.1 Introduction 292
8.2 Surface and interface structures of GaSb/GaAs 292
8.2.1 Surface reconstruction of GaSb on GaAs and in situ STM observation 293
8.2.2 Heterointerface structure of GaSb/GaAs 296
8.3 GaSb quantum dots on GaAs 301
8.3.1 MBE growth of self-assembled GaSb/GaAs quantum dots 301
8.3.2 Optical properties of GaSb/GaAs quantum dots 306
Chapter 9 Growth and Characterization of ZnO Nano- and Microstructures 314
9.1 Introduction 314
9.2 Growth of nanowires PLD 315
9.2.1 Synthesis strategies for ZnO nanostructures 315
9.2.2 High-pressure PLD process 317
9.2.3 Growth morphology 318
9.2.4 Structural characterization 321
9.3 Optical properties I: whispering gallery modes 323
9.3.1 Nanowire luminescence 323
9.3.2 Theory of hexagonal whispering gallery modes 325
9.3.3 Whispering gallery modes in hexagonal ZnO microcrystals 327
9.3.4 Whispering gallery modes in ZnO nanostructures 327
9.4 Optical properties II: stimulated emission from ZnO microcrystals 332
9.4.1 Experiments 332
9.4.2 Results and discussion 333
9.5 Electrical characterization of ZnO microcrystals 334
9.6 Conclusion 340
Acknowledgements 340
Chapter 10 Miniband-related 1.4–1.8 µm Luminescence of Ge/Si Quantum Dot Superlattices 345
10.1 Introduction 345
10.2 Experimental techniques 346
10.3 Experimental data and interpretation 347
10.3.1 Structural properties of Ge/Si QDSL 347
10.3.2 Luminescence properties and initial electronic structure 349
10.3.3 Effect of Sb doping 355
10.4 Miniband model for the Ge/Si QDSL 357
10.4.1 PL excitation power dependence 357
10.4.2 Miniband calculation 358
10.4.3 PL dependence on the number of periods 359
10.4.4 Temporal profile of QDSL PL 360
10.4.5 Temperature and power dependence of miniband 361
10.5 Conclusions 363
Acknowledgements 364
Chapter 11 Effects of the Electron–Phonon Interaction in Semiconductor Quantum Dots 367
11.1 Introduction 367
11.2 Non-adiabaticity of the exciton–phonon systems in spherical quantum dots 368
11.3 Photoluminescence of spherical quantum dots 369
11.3.1 The light absorption by quantum dots 369
11.3.2 The photoluminescence spectrum 372
11.3.3 Models for quantum dots 372
11.3.4 Numerical results and comparison with the experiment 374
11.4 Non-adiabaticity of the exciton–phonon systems in stacked quantum dots 377
11.5 Excitonic polarons in quantum dots: modification of the optical spectra 382
11.6 Recent studies 385
11.7 Conclusions 388
Acknowledgements 388
Chapter 12 Slow Oscillation and Random Fluctuation in Quantum Dots: Can we Overcome? 392
12.1 Introduction 392
12.2 What is a quantum dot? 393
12.3 Slow oscillation and random switching instability in a distribution of QDs 394
12.4 Many-body effects in coupled quantum dots 404
12.5 Conventional optical study of QDs 406
12.6 Single quantum dot spectroscopy 408
12.7 Instability in the PL of quantum dots 408
12.8 Summary 411
Acknowledgements 411
Chapter 13 Radiation Effects in Quantum Dot Structures 413
13.1 Introduction 413
13.2 Radiation hardness of quantum dot heterostructures 420
13.2.1 General remarks 420
13.2.2 In(Ga)As/GaAs quantum dots 421
13.2.3 Other quantum dots 428
13.2.4 Quantum dots embedded in a superlattice 430
13.2.5 Amorphizing damage 431
13.2.6 Low-dose effect 432
13.2.7 Irradiation with electrons of subthreshold energies and x-rays 432
13.2.8 Hydrogen passivation 433
13.2.9 Influence of defects on the thermal stability of the luminescence 433
13.3 Radiation hardness of QD lasers 434
13.4 Radiation technology 436
13.4.1 Intermixing 436
13.4.2 Self-organization upon irradiation 442
13.4.3 Ion-beam synthesis 443
13.4.4 Creation of magnetic nanocrystals 445
13.4.5 Other nanotechnological applications of radiation 454
13.5 Conclusions 455
Acknowledgements 455
Chapter 14 Probing and Controlling the Spin State of Single Magnetic Atoms in an Individual Quantum Dot 469
14.1 Introduction 469
14.2 II–VI diluted magnetic semiconductors quantum dots 470
14.2.1 Carrier–Mn coupling 470
14.2.2 CdTe:Mn/ZnTe quantum dots 472
14.3 Optical probing of the spin state of a single magnetic atom in a QD 474
14.3.1 Confined carriers–Mn exchange interaction 474
14.3.2 The exciton as a probe of the Mn spin state 477
14.3.3 Exciton–Mn thermalization process 478
14.4 Geometrical effects on the optical properties of quantum dots doped with a single magnetic atom 481
14.4.1 Influence of an anisotropic strain distribution 481
14.4.2 Influence of the shape anisotropy 483
14.5 Carrier-controlled spin properties of a single magnetic atom 486
14.5.1 Carrier-induced spin splitting of a single Mn atom in a quantum dot 486
14.5.2 Electrical control of a single Mn atom in a quantum dot 489
14.6 Conclusion 494
Acknowledgements 494
Chapter 15 Quantum Dot Charge and Spin Memory Devices 497
15.1 Introduction 497
15.1.1 Self-assembled quantum dots 498
15.1.2 Fundamental optical properties and single particle non-linearities 498
15.1.3 Optical memory structures based on quantum dots 501
15.2 Optically induced charge storage 502
15.2.1 Electrical detection of stored charge 502
15.2.2 Optically detected charge storage 507
15.2.3 Thermal redistribution and loss of electrons and holes 511
15.3 Optical spin orientation 514
15.3.1 Selection rules for the neutral exciton transition in QDs 514
15.3.2 Spin relaxation in semiconductor nanostructures 516
15.3.3 Polarization dynamics as a probe of electron spin relaxation dynamics 517
15.3.4 Hole spin relaxation in QDs 519
15.4 Outlook 522
Acknowledgements 522
Chapter 16 Engineering of Quantum Dot Nanostructures for Photonic Devices 526
16.1 Introduction 526
16.2 QD nanostructures for long wavelength emission 527
16.3 Quantum dot strain engineering 528
16.3.1 The quantum dot strain engineering approach: experimental 530
16.3.2 The quantum dot strain engineering approach: model and discussion 532
16.3.3 Further steps towards QD emission at 1.55 µm at room temperature 538
16.4 QD nanostructures for 0.98–1.04 µm emission 541
16.4.1 InGaAs/AlGaAs QDs: the effect of CL composition 542
16.4.2 InGaAs/AlGaAs QDs: the effect of QD composition 543
16.5 Conclusions 545
Acknowledgements 546
Chapter 17 Advanced Growth Techniques of InAs-system Quantum Dots for Integrated Nanophotonic Circuits 550
17.1 Introduction 550
17.2 Selective-area-growth of InAs quantum dots using the metal-mask/MBE method 551
17.2.1 Introduction 551
17.2.2 Experimental apparatus and procedures for MM/MBE method 552
17.2.3 Structural and optical properties of SA-grown QDs 554
17.2.4 PL wavelength control of InAs QDs with a strain-reducing-layer 556
17.2.5 Selective area-grown QD embedded in PC-WG 556
17.2.6 Summary 559
17.3 Site control of InAs QDs using the nano-jet probe (NJP) 560
17.3.1 Introduction 560
17.3.2 Experimental apparatus and procedures 560
17.3.3 Fabrication of site-controlled QDs 562
17.3.4 Summary 570
Chapter 18 Nanostructured Solar Cells 573
18.1 Introduction 573
18.2 Quantum dot solar cells 574
18.2.1 Intermediated band solar cells 574
18.3 Quantum dot growth 577
18.3.1 Stranksi–Kranstanow quantum dots 577
18.4 Organic quantum dot solar cells 579
18.5 Quantum dot solar cell behaviour 580
18.5.1 III–V quantum dot solar cell behaviour 580
18.5.2 Organic bulk heterojunction solar cells 582
18.6 Conclusions 584
Chapter 19 Quantum Dot Superluminescent Diodes 586
19.1 Introduction 586
19.1.1 Superluminescent diodes and their applications 586
19.1.2 Application requirements and markets 587
19.1.3 Quantum dots for superluminescent diodes 588
19.2 QD growth for SLEDs 590
19.2.1 Chirped multiple QD structure 591
19.2.2 Increasing the inhomogeneous spectral width of a single layer of QDs 593
19.2.3 Conclusions and perspectives 595
19.3 Wide-spectrum InAs/GaAs QD SLEDs 595
19.3.1 Gain and length requirements 595
19.3.2 Narrow-gain devices 599
19.3.3 Wide-gain devices 600
19.3.4 Coherence properties 603
19.3.5 Temperature characteristics 604
19.4 Modelling QD SLEDs 608
19.4.1 Travelling-wave rate-equation models 608
19.4.2 Modelling of spectral characteristics – towards flat-top spectra 611
19.5 Conclusion and perspectives 616
19.5.1 Comparison of present performance with commercial devices and application needs 616
19.5.2 Potential improvements 617
Chapter 20 Quantum Dot-based Mode-locked Lasers and Applications 621
20.1 Introduction 621
20.2 InAs/GaAs quantum dot mode-locked lasers 621
20.2.1 Quantum dot active medium for ultra-short pulse generation 622
20.2.2 Gain properties of quantum dot mode-locked lasers 623
20.2.3 Quantum dot saturable absorber 626
20.2.4 Low timing jitter of quantum dot mode-locked lasers 630
20.2.5 Summary 631
20.3 InAs/InP quantum dash mode-locked lasers emitting at 1.55 µm 631
20.3.1 Sub-picosecond pulse generation at very high repetition rate 631
20.3.2 Extremely narrow radio frequency spectrum 633
20.3.3 Phase amplitude characterization 634
20.4 Applications 634
20.4.1 Optical interconnects applications 634
20.4.2 40 Gb/s all-optical clock recovery at 1.55 µm 636
20.5 Conclusion and perspectives 637
Acknowledgements 637
Chapter 21 Quantum Dot Infrared Photodetectors by Metal-Organic Chemical Vapour Deposition 641
21.1 Introduction 641
21.2 Theoretical modelling of quantum dot infrared detectors 643
21.2.1 Single-band effective mass envelope function method 643
21.2.2 Oscillator strength 646
21.2.3 Absorption 646
21.2.4 Modelling of responsivity and photocurrent 647
21.2.5 Escape rate 648
21.2.6 Gain 648
21.2.7 Dark current 649
21.2.8 Modelling of detectivity 651
21.2.9 Summary 652
21.3 InP-based QDIP materials growth and characterizations 652
21.3.1 Growth and characterization of matrix material 652
21.3.2 Growth and characterization of InAs QDs 653
21.3.3 Single-layer InAs quantum dots on InP 653
21.3.4 Single-layer InAs quantum dots on GaInAs 655
21.3.5 Doping of InAs quantum dots 656
21.3.6 Conclusions 656
21.4 InP-based QDIP device results 656
21.4.1 InAs/GaInAs/InP QDIP 656
21.4.2 InAs/AlInAs/InP QDIP 660
21.4.3 MWIR InP-based QDIP 664
21.4.4 InAs QD/InGaAs QW/AlInAs barrier MWIR QDIP 672
21.4.5 Summary 675
21.5 InP-based QDIP focal plane arrays 675
21.6 Summary 677
Chapter 22 Quantum Dot Structures for Multi-band Infrared and Terahertz Radiation Detection 680
22.1 Introduction 680
22.2 Multi-band quantum dots-in-a-well (DWELL) infrared photodetectors 681
22.2.1 DWELL device structure 683
22.2.2 Device characterization techniques 684
22.2.3 Experimental results and effects of the well width on response peaks 685
22.3 Tunnelling quantum dot infrared photodetectors (T-QDIPs) 689
22.3.1 Theoretical background and T-QDIP structure 690
22.3.2 Two-colour room temperature T-QDIPs 692
22.3.3 T-QDIPs for terahertz radiation detection 696
22.4 Improvement of QDIP performance 698
22.5 Present performance capabilities of QDIPs 700
22.6 Quantum dot focal plane arrays (FPAs) 701
22.7 Conclusion 704
Acknowledgements 704
Chapter 23 Optically Driven Schemes for Quantum Computation Based on Self-assembled Quantum dots 708
23.1 Introduction and fundamentals of quantum information processing 708
23.1.1 Basic requirements for implementing quantum computation 709
23.2 Semiconductor self-assembled quantum dots as hardware 710
23.3 Exciton representation 712
23.3.1 Single-qubit manipulation 712
23.3.2 Two-qubit manipulation 713
23.4 Spin representation 718
23.4.1 Single-qubit gates 718
23.4.2 Two-qubit gates 721
23.5 General quantum computer architecture and related quantum devices 722
23.5.1 Quantum dot-based quantum bus 722
23.5.2 Control arrays 724
23.5.3 Quantum dot-based quantum computer architecture 724
23.5.4 Entanglement distributor 725
23.6 Conclusions 726
Chapter 24 Quantum Optics with Single CdSe/ZnS Colloidal Nanocrystals 729
24.1 Introduction 729
24.2 Theoretical background on single-photon sources 730
24.2.1 Introduction: quantum key distribution and single photons 730
24.2.2 Statistical properties of a light beam 731
24.3 Optical properties of a nanocrystal 736
24.3.1 Colloidal semiconductor nanocrystals 736
24.3.2 Elements of theoretical description 737
24.3.3 Absorption spectrum 738
24.3.4 Exciton and multiexciton relaxation mechanisms 739
24.3.5 Fine structure of the emission level 740
24.4 Nanocrystals as single-photon sources 742
24.4.1 Photon antibunching 742
24.4.2 Single-photon emission on demand 743
24.4.3 Other characterisitics of a single-photon source 743
24.5 Beyond the isolated emitter – QD/environment interactions 745
24.5.1 Introduction 745
24.5.2 Quantum dot fluorescence intermittency 745
24.5.3 Blinking kinetics 749
24.5.4 Origin of quantum dot blinking kinetics 751
24.5.5 Conclusion 753
24.6 Time coherence of the single photons emitted by an individual nanocrystal 753
24.6.1 Monomode photons and quantum computing 753
24.6.2 Spectroscopy of a single nanocrystal 754
24.6.3 Photon-correlation Fourier spectroscopy 755
24.7 Multiexcitonic emission of colloidal quantum dots 757
24.7.1 Auger processes in colloidal quantum dots 757
24.7.2 Entangled photon pair generation by solid-state sources 758
24.7.3 Entangled photon pair generation by CdSe quantum dots 759
24.8 Controlling quantum dot emission with photonic structures 759
24.8.1 Cavity quantum electodynamics 759
24.8.2 Weak coupling regime 760
24.8.3 Dielectric cavities 760
24.8.4 Metallic photonic cavities 761
24.8.5 Perspectives 762
24.9 Conclusions 763
Chapter 25 PbSe Core, PbSe/PbS and PbSe/PbSe[sub(x)]S[sub(1–x)] Core–Shell Nanocrystal Quantum Dots: Properties and Applications 770
25.1 Introduction 770
25.2 Synthesis, chemical stability, and structural characterization of PbSe NQDs, PbSe/PbS core–shell NQDs and PbSe/PbS[sub(x)]eS[sub(1–x)] core-alloyed–shell NQDs 771
25.2.1 Synthesis of PbSe NQDs cores, covered with organic surfactants (alternative I) 771
25.2.2 Synthesis of PbSe NQDs cores, covered with organic surfactants (alternative II) 772
25.2.3 Synthesis of PbSe/PbS core–shell NQDs by a two-injection process 772
25.2.4 Synthesis of PbSe/PbSe[sub(x)]S[sub(1–x)] core-alloyed–shell NQDs by a single-injection process 772
25.2.5 PbSe core and core–shell NQDs, capped with water-soluble ligands 772
25.2.6 Storage conditions and encapsulation of the NQDs in a polymer film 773
25.2.7 Synthesis of organically capped and water-soluble & #947
25.3 Structural characterization of PbSe core, PbSe/PbS core–shell and PbSe/PbS[sub(x)]eS[sub(1–x)] core-alloyed–shell NQDs 774
25.4 Optical properties of PbSe NQDs, PbSe/PbS core–shell NQDs and PbSe/PbS[sub(x)]eS[sub(1–x)] core-alloyed–shell NQDs 776
25.5 Passive Q-switching, using PbSe NQDs, PbSe/PbS core–shell NQDs and PbSe/PbSe[sub(x)S[sub(1–x)] core-alloyed–shell NQDs 782
25.6 PbSe NQDs used in a gain device and integrated into microcavities 786
25.7 Coupling of PbSe NQDs with & #947
25.8 Electrical properties of PbSe NQDs' ordered solids 789
25.9 Summary 791
Acknowledgements 792
Chapter 26 Semiconductor Quantum Dots for Biological Applications 794
26.1 Introduction 794
26.2 Creating a fluorescent biolabel out of semiconductor nanocrystals 797
26.2.1 How did people work out how to control the particles down to the nanoscale size range? The evolution of the synthetic procedures 798
26.2.2 Still some problems: quantum dots have imperfect surfaces! The passivation process 802
26.2.3 How to render QDs soluble (hydrophilic surface) for biological applications. Solubilization of the nanoparticles 804
26.2.4 How to target the QDs to biological systems. The functionalization step 806
26.2.5 Bioconjugation of the QDs 808
26.3 Applications 809
26.3.1 CdS quantum dots for red blood cells antigen – A labelling 810
26.3.2 Non-linear microspectroscopy in an optical tweezers system – application to cells marked with quantum dots 811
26.3.3 Quantum dots as fluorescent bio-labels in cancer diagnostics 812
Chapter 27 Quantum Dot Modification and Cytotoxicity 820
27.1 Quantum dots are born to be an electronic device 820
27.2 Quantum dots acquire a colourful personality with their environmental magic 820
27.3 Quantum dots go to the biological field, wearing a fluorescent dress 824
27.4 Quantum dot toxicty: a forgotton glass slipper 824
Chapter 28 Colloidal Quantum Dots (QDs) in Optoelectronic Devices – Solar Cells, Photodetectors, Light-emitting Diodes 831
28.1 Introduction 831
28.2 Advances in QD synthesis, QD array synthesis and properties of the resulting structures 833
28.3 Quantum dot arrays and related studies underlying photoluminescence and potential light-emitting diode applications 836
28.4 Quantum dot arrays as potential photodetectors 837
28.5 Quantum dot arrays as potential solar cells 837
28.6 Summary 839
Index 842
A 842
B 842
C 843
D 844
E 845
F 846
G 847
H 848
I 849
J 850
K 850
L 851
M 851
N 852
O 853
P 853
Q 854
R 857
S 858
T 860
U 861
V 861
W 861
X 862
Y 862
Z 862

Erscheint lt. Verlag 28.7.2011
Sprache englisch
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-056047-4 / 0080560474
ISBN-13 978-0-08-056047-2 / 9780080560472
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 24,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Vieweg (Verlag)
119,99