RF and Microwave Microelectronics Packaging (eBook)

eBook Download: PDF
2009 | 2010
XVI, 285 Seiten
Springer US (Verlag)
978-1-4419-0984-8 (ISBN)

Lese- und Medienproben

RF and Microwave Microelectronics Packaging -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

RF and Microwave Microelectronics Packaging presents the latest developments in packaging for high-frequency electronics. It will appeal to practicing engineers in the electronic packaging and high-frequency electronics fields and to academic researchers interested in understanding leading issues in the commercial sector. It covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods as well as other RF/MW packaging-related fields.


RF and Microwave Microelectronics Packaging presents the latest developments in packaging for high-frequency electronics. It will appeal to practicing engineers in the electronic packaging and high-frequency electronics fields and to academic researchers interested in understanding leading issues in the commercial sector. It covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods as well as other RF/MW packaging-related fields.

Preface 4
Contents 7
Contributors 13
1 Fundamentals of Packaging at Microwaveand Millimeter-Wave Frequencies 15
1.1 Wavelength and Frequency 17
1.2 Lumped Elements 17
1.3 Transmission Lines 19
1.3.1 Dispersion 22
1.3.2 Dispersion Effects in High Speed Systems 24
1.3.3 Transmission Line Distributed Effects 26
1.3.4 Transmission Line Coupling and Cross Talk 27
1.4 Package Fabrication Methods 29
1.4.1 Co-fired Ceramics 29
1.4.2 Thick Film and Thin Film Ceramics 32
1.4.3 Organic Substrates 33
1.5 Interconnects 34
1.6 Conclusions 36
References 37
2 Low-Cost High-Bandwidth Millimeter Wave LeadframePackages 38
2.1 Introduction 38
2.2 MicroCoax Approach 39
2.2.1 Packaging Approaches 42
2.2.2 Limitations to the Approach 45
2.3 MicroCoax/Leadframe Approach 45
2.3.1 Package I/O Structure Considerations 46
2.3.2 Modelling the Signal Path 47
2.3.3 Performance 51
2.4 Conclusion 55
3 Polymeric Microelectromechanical Millimeter Wave Systems 56
3.1 Introduction 56
3.2 Polymeric Millimeter Wave Systems using Micromachining Technologies 57
3.3 Fabrication Examples of mm-Wave Components 61
3.3.1 Polymeric Waveguides 61
3.3.2 Waveguide-Based Iris Filters 62
3.3.3 Waveguide-Based Tunable Filters and Phase Shifters 64
3.3.4 Waveguide-Fed Horn Antennas 68
3.3.5 W-Band Waveguide Feeding Network of a 22 Horn Antenna Array 70
3.4 Fundamental Characterizations of Polymer Metallization Process 72
3.4.1 Surface Roughness 72
3.4.2 Characterization of In-channel Electroplating Thickness 74
3.4.3 Geometry Effects 75
3.5 Conclusion 78
References 78
4 Millimeter-Wave Chip-on-Board Integration and Packaging 82
4.1 Motivation Motivation for a Chip-on-Board Approach for Millimeter-Wave Product Manufacturing 82
4.1.1 The Drive for Low Cost 82
4.1.2 Low-Cost Manufacturing Processes 83
4.1.2.1 Minimizing Labor and Capital Cost per Unit 83
4.1.2.2 Minimizing Materials Cost 85
4.1.2.3 Achieving Scalability Scalability 85
4.1.3 Problems Specific to Millimeter-Wave Electronics 86
4.1.3.1 The Problem of Distances 86
4.1.3.2 The Problem with Encapsulants Encapsulants 89
4.1.3.3 The Problem of Shielding Shielding 91
4.1.3.4 The Problem of Cavity Resonances 91
4.1.3.5 The Problem of Thermal Expansion Mismatch 92
4.1.3.6 The Problem of Environmental Control 93
4.2 A Chip-on-Board Solution 93
4.2.1 The Surface-Mount Panel 94
4.2.2 Attaching the Bare Chips 96
4.2.3 Wire Bond Interconnects 96
4.2.4 Eliminating Wire Bonds in the RF Path 97
4.2.5 Cover Cover Lamination 98
4.2.6 Segregation Segregation 100
4.2.7 Testing 100
4.3 Application Examples 100
4.3.1 A 60-GHz Transceiver 101
4.3.2 Miniaturized 60-GHz Transmitter and Receiver Modules 102
4.3.3 76-GHz Automotive Radar Module Package 102
4.4 Summary 103
References 103
5 Liquid Crystal Polymer for RF and Millimeter-Wave Multi-Layer Hermetic Packages and Modules 104
5.1 Introduction 104
5.2 Design and Fabrication of the Thin-Film LCP Package 106
5.3 Lid Construction and Lamination 108
5.4 Results and Model of Lowpass Feedthrough 111
5.5 Hermeticity and Leak Rate Measurement 114
5.6 Reliability of LCP Surface Mount Packages 115
5.6.1 Non-operating Temperature Step Stressing 116
5.6.2 Non-operating Thermal Shock Testing 116
5.6.3 Operating Humidity Exposure Testing 118
5.6.4 Reliability Testing Summary 119
5.7 Bandpass Feedthrough 119
5.7.1 Bandpass Feedthrough Design and Fabrication 119
5.7.2 Bandpass Feedthrough Results and Discussion 122
5.8 Conclusion 124
References 125
6 RF/Microwave Substrate Packaging Roadmap for PortableDevices 127
6.1 Introduction 127
6.2 Substrate Materials for Portable Products 128
6.3 RF Substrate Materials Thermal and Electrical Properties 128
6.3.1 Standard FR-4 128
6.3.2 High TG FR-4 129
6.3.3 Polyimide 130
6.4 Cyanate Ester Blend (BT- Bismaleamide Triazine) 130
6.5 PTFE Based Laminates 131
6.5.1 PTFE Resin Coated on Conventional Glass 131
6.5.2 PTFE Film Impregnated with Cyanate Ester or Epoxy Resin 131
6.5.3 PTFE Mixed with Low Dk Ceramic 131
6.6 Materials Summary 132
6.7 Substrate Critical Properties 132
6.7.1 Dielectric Constant (Dk) 132
6.7.2 Dissipation Factor/Dielectric Loss: (tan) 133
6.7.3 Glass Transition Temperature ( Tg) 133
6.7.4 Glass Decomposition Temperature Td
6.7.5 Moisture Absorption 134
6.7.6 Coefficient of Thermal Expansion 134
6.8 Materials Summary 134
6.9 Portable Products Technology Roadmap 134
6.10 Summary 138
6.11 Summary 140
References 140
7 Ceramic Systems in Package for RF and Microwave 141
7.1 Introduction 141
7.2 RF-PLATFORM 141
7.2.1 LTCC for Systems in Package 142
7.2.2 Design of Ceramic Packages 143
7.2.3 Why Multi-Project Wafers Made of LTCC? 143
7.2.4 Hermetic Capping of MEMS with Ceramic Lids 144
7.2.5 LTCC Packages for Advanced RF and Microwave Applications 145
7.3 Three Examples 147
7.3.1 4 by 4 Patch Antenna Array for Operation at 35 GHz 147
7.3.1.1 Design of the Fixed Beam Antenna 148
7.3.1.2 Characterisation and Measurements 149
7.3.1.3 Hybrid Integration Concept for RF-MEMS Phase Shifters on Silicon 152
7.3.2 LTCC for 77 81 GHz Automotive Radar Systems-in-Package 154
7.3.3 24 GHz Switched Beam Steering Array Antenna Based on RF MEMS Switch Matrix 157
7.3.3.1 RF MEMS Switch Network 158
7.3.3.2 Travelling Wave Antennas 160
7.3.3.3 Heterogeneous Integration Using LTCC 161
7.4 RF-MEMS for Radar and Telecom Applications 167
7.4.1 Research Activities and Trends on RF-MEMS Switches 168
7.4.1.1 High Performance RF-MEMS Switches on Silicon Using High-k Dielectric Material 168
7.4.1.2 Integration of RF-MEMS in Functional Devices 170
7.4.1.3 Monothically Integrated GaN-Based RF-MEMS Switches for High Power Handling 172
7.4.1.4 35-GHz RF-MEMS Switches in the Framework of RF-PLATFORM 174
References 175
8 Low-Temperature Cofired-Ceramic Laminate Waveguides for mmWave Applications 176
8.1 Introduction 176
8.2 The Laminated Waveguide 177
8.3 Transitions to a LWG 178
8.4 Rectangular Waveguide Theory 180
8.5 LTCC Process 185
8.6 Insertion Loss in an LTCC Laminated Waveguides 185
8.7 U- band 188
8.8 V-band 189
8.9 E-band 189
8.10 W-band 189
8.11 F-band 195
8.12 LWG-to-LWG Coupling 195
8.13 LWG vs. Stripline 195
8.14 Summary 198
References 199
9 LTCC Substrates for RF/MW Application 200
9.1 Introduction 200
9.2 LTCC Fabrication Process 203
9.3 Current Status and Trend 208
References 214
10 High Thermal Dissipation Ceramics and Composite Materials for Microelectronic Packaging 218
10.1 Introduction 219
10.2 Ceramics and Carbon Based Materials 221
10.2.1 Common Packaging Ceramics 221
10.2.2 LTCC 221
10.2.3 High Performance Packaging Ceramics (BeO AlN) 226
10.3 Direct Bond Copper (DBC) Packaging 229
10.4 RF/MW Brazed Packages 231
10.5 Thin-Film Packaging 231
10.6 Thick-Film Packaging 232
10.7 Carbon Nanotubes (CNT) 233
10.8 Composites 234
10.8.1 Metal Matrix Composites 234
10.8.2 Cu/cBN Composites 238
10.8.3 Cu/SiC Composites 239
10.8.4 Al/Diamond Composites 239
10.9 Conclusions 241
References 242
11 High Performance Microelectronics Packaging Heat SinkMaterials 244
11.1 Introduction 244
11.2 Refractory Metal Based Microelectronics Packaging Materials 247
11.2.1 Development, Manufacturing and Application of Copper Tungsten 247
11.2.1.1 Characteristics of Copper Tungsten 247
11.2.1.2 WCu Manufacturing Process and Technical Properties 248
11.2.2 Development, Manufacturing and Application of Copper Molybdenum (MoCu) 252
11.2.2.1 Comparison Between MoCu and WCu Packaging Materials 252
11.2.2.2 MoCu Manufacturing Process and Technical Properties 254
11.2.3 Development, Manufacturing and Application of Copper-Molybdenum-Copper Laminates and Copper-Copper/Molybdenum-Copper Laminates 255
11.2.3.1 Material Characteristics 255
11.2.3.2 Manufacturing Process Flow and Typical Properties 256
11.3 Aluminum Based Heat Sink Materials 259
11.3.1 AlSiC Heat Sink Materials 259
11.3.1.1 History and Characteristics 259
11.3.1.2 Aluminum Matrix Composite Materials 259
11.4 New Development for Microelectronics Packaging Heat Sink Materials 269
References 273
12 Technology Research on AlN 3D MCM 277
12.1 Introduction 277
12.2 Experiment 279
12.2.1 Co-fired Spacer Rod and 2D MCM Substrate 279
12.2.2 Vertical Interconnected by BGA Solder Ball 279
12.2.3 AlN 3D MCM Package 279
12.2.4 Technological Method 280
12.3 Result and Discussion 280
12.3.1 General Technological Scheme 280
12.3.2 Layout and Interconnect Design 281
12.3.2.1 2D MCM Layout Design 281
12.3.2.2 3D MCM Interconnected Design 281
12.4 Matching Optimization Research on W paste and AlN Ceramics 282
12.4.1 Technological Improvement Experiment of AlN 2D MCM Substrate 283
12.4.2 The Making of Spacer Rod 284
12.4.3 Package Technology 286
12.4.4 Vertical Interconnected Technology Research 286
12.5 Result of Experiment 288
12.6 Conclusion 288
References 288
Index 290

Erscheint lt. Verlag 1.12.2009
Zusatzinfo XVI, 285 p.
Verlagsort New York
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte 3D packaging • Composite material • Electronic Packaging • Electronics • high-frequency electronics • Material • packaging and processing methods • RF and microwave microelectronics • Simulation • thermal management • thermal mechanical designs
ISBN-10 1-4419-0984-2 / 1441909842
ISBN-13 978-1-4419-0984-8 / 9781441909848
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99