Plastics from Bacteria (eBook)

Natural Functions and Applications

George Guo-Qiang Chen (Herausgeber)

eBook Download: PDF
2009 | 2010
X, 450 Seiten
Springer Berlin (Verlag)
978-3-642-03287-5 (ISBN)

Lese- und Medienproben

Plastics from Bacteria -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Due to the possibility that petroleum supplies will be exhausted in the next decades to come, more and more attention has been paid to the production of bacterial pl- tics including polyhydroxyalkanoates (PHA), polylactic acid (PLA), poly(butylene succinate) (PBS), biopolyethylene (PE), poly(trimethylene terephthalate) (PTT), and poly(p-phenylene) (PPP). These are well-studied polymers containing at least one monomer synthesized via bacterial transformation. Among them, PHA, PLA and PBS are well known for their biodegradability, whereas PE, PTT and PPP are probably less biodegradable or are less studied in terms of their biodegradability. Over the past years, their properties and appli- tions have been studied in detail and products have been developed. Physical and chemical modifications to reduce their cost or to improve their properties have been conducted. PHA is the only biopolyester family completely synthesized by biological means. They have been investigated by microbiologists, molecular biologists, b- chemists, chemical engineers, chemists, polymer experts, and medical researchers for many years. PHA applications as bioplastics, fine chemicals, implant biomate- als, medicines, and biofuels have been developed. Companies have been est- lished for or involved in PHA related R&D as well as large scale production. It has become clear that PHA and its related technologies form an industrial value chain in fermentation, materials, feeds, and energy to medical fields.

Chen_FM.pdf 1
Chen_Ch01.pdf 10
Introduction of Bacterial Plastics PHA, PLA, PBS, PE, PTT, and PPP 10
1 Introduction 11
2 Monomers of Bacterial Plastics Synthesized by Microorganisms 11
3 Polymerization of the Bacterial Plastics 12
4 Comparison of Bacterial Plastics 12
4.1 Thermal Properties and Mechanical Properties 12
4.2 Molecular Weights 14
4.3 Biodegradability 15
4.4 Structural and Property Modification 15
4.4.1 Chemical Modification 18
4.4.2 Physical Modification 18
4.5 Applications 19
5 Conclusion and Future Perspectives 20
References 20
Chen_Ch02.pdf 26
Plastics Completely Synthesized by Bacteria: Polyhydroxyalkanoates 26
1 Introduction 27
2 Biosynthesis of PHA 29
2.1 Biochemistry and Molecular Biology of PHA Synthesis 29
2.2 Prokaryotic PHA 32
2.2.1 Homopolymer PHA 33
2.2.2 Copolymer PHA 33
2.2.3 Block Copolymer PHA 33
2.3 Eukaryotic PHA 34
3 Microbial Synthesis of PHA Monomers 35
3.1 PHA Monomers Produced by Microorganisms 35
3.2 The Application of PHA Monomers for Synthesis of Other Polyesters 36
4 Application of PHA 36
4.1 PHA as Packaging Materials 36
4.2 PHA as Biomedical Implant Materials 37
4.3 PHA as Drug Delivery Carriers 38
4.4 PHA as Biofuels 40
4.5 PHA Monomers as Drugs 41
5 Conclusion and Future Perspectives 42
References 43
Chen_Ch03.pdf 47
Natural Functions of Bacterial Polyhydroxyalkanoates 47
1 Introduction 48
2 The Role of PHA in Cell Survival Under Stress 49
3 Molecular Evidence Supporting a Role for PHA Synthesis in Stress Endurance 51
4 Regulation of PHA Synthesis 53
5 PHA in Soil and in Plant–Microbe Interactions 55
6 Relevance of PHA in Microbial Communities 57
7 Utilization of the Energy Obtained from PHA for Environmental Cues 58
7.1 Chemotaxis 58
7.2 Exopolysaccharide Production 59
7.3 PHA as a Carbon and Energy Source for “Environmental Bacteria” 60
8 Phylogenetic Aspects of PHA Metabolism and Their Relationship with the Environment 61
9 PHA Applications in Agriculture 63
10 Conclusions 64
References 64
Chen_Ch04.pdf 70
Towards Systems Metabolic Engineering of PHA Producers 70
1 Introduction 71
2 Traditional Metabolic Engineering of PHA Producers 72
2.1 Natural PHA Producers and Metabolic Engineering 72
2.2 Engineering of Non-PHA Producers 74
3 Systems-Biological Approach for PHA Production 78
3.1 Systems Metabolic Engineering for Strain Improvement 79
3.2 Metabolic Engineering Based on Omics Studies 80
3.3 Future of Systems Metabolic Engineering for PHA Production 84
4 Concluding Remarks and Future Perspectives 84
References 86
Microbial PHA Production from Waste Raw Materials 1
1 Introduction 1
1.1 General 1
1.2 The Increasing Interest in Polyhydroxyalkanoate Biopolyesters 1
1.3 Value-Added Utilization of ‘Waste PHAs’ 1
1.4 The Need for Cheap Substrates and Their Occurrence 1
1.5 Seasonal Availability of Waste Streams 1
1.6 By-Products of Waste Streams 1
2 Available Waste Streams in Different Global Regions 1
2.1 Cheap Nitrogen Sources for Production of Active Biomass 1
2.2 Waste Lipids 1
2.3 Waste Streams from Biofuel Production 1
2.4 Surplus Whey from the Dairy Industry 1
2.5 Lignocellulosic Wastes 1
2.6 Starch 1
2.7 Materials from the Sugar Industry 1
2.8 Lactic Acid as a Versatile Intermediate Towards Follow-Up Products 1
3 Concluding Remarks and Future Perspectives 1
References 1
Chen_Ch06.pdf 127
Industrial Production of PHA 127
1 Introduction 128
2 Industrial Production of PHB 130
2.1 PHB Produced by Chemie Linz, Austria, Using Alcaligenes latus 130
2.2 PHB Produced by PHB Industrial Usina da Pedra-Acucare Alcool Brazil Using Bhurkolderia sp. 131
2.3 PHB Produced by Tianjin Northern Food and Lantian Group China Using Ralstonia eutropha and Recombinant Escherichia col 132
3 Industrial Production of PHBV 132
4 Industrial Production of P3HB4HB 132
5 Industrial Production of PHBHHx 133
5.1 Metabolic Engineering for PHBHHx Production 134
6 Industrial Production of mcl Copolymers of (R)-3-Hydroxyalkanoates 135
7 Conclusion and Future Perspectives 136
References 137
Chen_Ch07.pdf 139
Unusual PHA Biosynthesis 139
1 Introduction 140
2 Naturally Occurring PHAs 142
2.1 Classification of Naturally Occurring PHAs 144
2.2 General Properties and Biotechnological Applications of Naturally Occurring PHAs 148
3 Unusual PHAs 149
3.1 UnPHAs Synthesized by Micro-Organisms 150
3.1.1 UnPHAs Belonging to Class 1 151
UnPHAs Containing Unsaturated or Functionalized Monomers 151
Unsaturated PHAs 151
PHAs Containing Functionalized Monomers 153
3.1.2 PHAs with Elongated Backbones (Class 2) 159
3.1.3 PHAs Containing Thioester Linkages (Class 3) 160
3.1.4 Functional Analyses of the Different Proteins Involved in the Synthesis and Accumulation of UnPHAs 161
Substrate Specificity of the Two Polymerases (PhaC1 and PhaC2) Involved in the Synthesis of mcl-UnPHAs 162
Depolymerases 163
Role Played by PhaDFI Proteins 164
3.2 UnPHAs Obtained by Chemical or Physical Modifications of Naturally Occurring One 165
3.2.1 Functionalization of Microbial PHAs 165
Halogenation of PHAs 165
Epoxidation of Unsaturated PHAs 166
Hydroxylation of Unsaturated PHAs 166
Carboxylation of Unsaturated PHAs 166
Glycopolymers 167
3.2.2 Cross-Linking of PHAs 167
Peroxide Cross-Linking 168
Sulphur Vulcanization 168
Sulphur-Free and Peroxide-Free Cross-Linking 168
Radiation-Induced Cross-Linking 168
3.2.3 Graft Copolymers of PHAs 169
3.2.4 Block Copolymers of PHAs 170
3.2.5 Blending of PHAs with Other Polymers 171
Totally Biodegradable Blends 171
Non-Totally Biodegradable Blends 172
4 Biotechnological Applications 172
5 Concluding Remarks and Future Outlook 173
References 174
Chen_Ch08.pdf 193
Metabolic Engineering of Plants for the Synthesis of Polyhydroxyalkanaotes 193
1 Introduction 194
2 Polyhydroxybutyrate 194
2.1 Synthesis of Polyhydroxybutyrate in the Cytoplasm 194
2.2 Synthesis of Polyhydroxybutyrate in the Plastid 198
2.3 Synthesis of Polyhydroxybutyrate in Mitochondria 203
2.4 Synthesis of Polyhydroxybutyrate in the Peroxisome 203
3 Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] 204
3.1 Synthesis of Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] in the Cytosol 204
3.2 Synthesis of Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] in the Plastid 205
4 Medium-Chain-Length Polyhydroxyalkanaote 206
5 Short-Chain-Length to Medium-Chain-Length Polyhydroxyalkanaote Copolymers 211
6 Concluding Remarks and Future Perspectives 212
References 213
Chen_Ch09.pdf 218
Biosynthesis of Medium-Chain-Length Poly[(R)-3-hydroxyalkanoates] 218
1 Introduction 219
2 mcl-PHAs: Their Chemical Structure and Biosynthesis in Prokaryotes 219
2.1 Chemical and Physical Properties 219
2.2 Representative mcl-PHA Production Strains 221
2.3 Biochemistry of Biosynthesis 224
2.4 Genetic Engineering 227
3 General Production Processes 228
3.1 Basic Concepts of Nutrition 228
3.2 Batch and Fed-Batch Systems 228
3.3 Chemostat 229
3.4 High Cell Density Cultivations 229
3.4.1 Use of Elevated Pressure to Enhance Oxygen Transfer in Bioprocesses 230
4 Production Processes to Tailor mcl-PHAs 231
4.1 Multiple Nutrient Limited Growth 231
5 Conclusions 232
References 234
Chen_Ch10.pdf 242
Nodax™ Class PHA Copolymers: Their Properties and Applications 242
1 Introduction 243
2 Molecular Structure 243
3 Preparation Methods 245
3.1 Chemical Synthesis 245
3.2 Biosynthesis 246
4 Properties 247
4.1 Biological Properties 247
4.2 Thermal Properties and Crystallinity 248
4.2.1 Melt Temperature 248
4.2.2 Crystallinity 250
4.2.3 Glass-Transition Temperature 251
4.3 Mechanical Properties 251
4.4 Other Useful Properties 255
5 Processing and Conversion to Products 256
6 Production and Commercialization 257
7 Concluding Remarks 258
References 259
Chen_Ch11.pdf 261
Manufacturing of PHA as Fibers 261
1 Introduction 262
2 High Tensile Strength Fibers 264
2.1 Cold-Drawn and Two-Step-Drawn Fibers Produced from UHMW-P(3HB) 264
2.1.1 Processing and Mechanical Properties 264
2.1.2 Structure Analysis 265
2.2 One-Step-Drawn Fibers Produced from Commercial PHA 267
2.2.1 Processing and Mechanical Properties 267
2.2.2 Structure Analysis 269
3 Microbeam X-Ray Diffraction Study 271
3.1 Two Kinds of Fiber Structures 271
3.2 Generation Mechanism of Planar Zigzag Conformation (b-Structure) 272
4 X-Ray Microtomography Study 273
5 Electrospun Nanofibers 276
6 Enzymatic and In Vivo Degradation of Fibers 278
6.1 Enzymatic Degradation of Strong Fibers and Nanofibers 278
6.2 In Vivo Degradation of Nanofibers 281
6.2.1 Morphological Changes 281
6.2.2 Histological Observation 282
7 Prospects 283
References 284
Chen_Ch12.pdf 287
Degradation of Natural and Artificial Poly[(R)-3-hydroxyalkanoate]s: From Biodegradation to Hydrolysis 287
1 Introduction 288
2 Biodegradation of Bacterial Polyesters 288
2.1 Extracellular Degradation 290
2.1.1 Short-Chain-Length PHAs 290
2.1.2 Medium-Chain-Length PHAs 294
2.1.3 Structure and Degradation of PHB and Copolymers 295
2.2 Intracellular Degradation 299
2.2.1 Short-Chain-Length PHB 299
2.2.2 PHAs with Long Alkyl and/or Phenyl Substituents in the Side Chain 303
2.3 Degradation of PHAs Under Aqueous Conditions 306
3 Chemical Modification of Bacterial Polyesters: Hydrophilicity, Hydrolysis, Wettability 308
3.1 Introduction of Polar Groups 308
3.1.1 Introduction of Hydroxy Groups 309
3.1.2 Introduction of Carboxy Groups 309
3.2 Synthesis of Cationic PHA 311
3.3 Graft Copolymers from PHAs and Their Behavior in Aqueous Media 311
3.4 Amphiphilic Block Copolymers 312
3.4.1 PEG–PHB–PEG Copolymers 314
3.4.2 Poly(PHB/PEG urethane)s 314
3.4.3 PHB/PEG Diblock Copolymers 315
3.5 Wettability of Surfaces 315
4 Concluding Remarks and Future Perspectives 316
References 317
Chen_Ch13.pdf 326
Microbial Lactic Acid, Its Polymer Poly(lactic acid), and Their Industrial Applications 326
1 Lactic Acid and Its Derivatives 327
2 Production of Lactic Acid by Fermentation 329
3 Production of PLA 333
4 Markets and Applications for PLA 336
5 Characteristics and Modifications of PLA for Various Applications 337
5.1 Crystallization of PLA by Nucleating Agents 339
5.2 Compounding PLA with Other Polymers and/or Chemical Additives 340
5.3 Compounding PLA with Nonplastic Materials 342
5.4 Processing Technology To Improve PLA Performance 342
5.5 Polymerization or Copolymerization To Modify PLA 343
6 Factors Helping the Growth of the PLA Industry 343
6.1 Government Regulations and Public Awareness 344
6.2 Development of Compounding, Converting, and Process Equipment Technologies 344
6.3 Development of Polymerization Technology 345
6.4 Reduction of Plant Cost and Entry Risk 345
6.5 Infrastructure of Recycling or Composting PLA Waste 345
7 Concluding Remarks and Future Perspectives 346
References 348
Chen_Ch14.pdf 350
Microbial Succinic Acid, Its Polymer Poly(butylene succinate), and Applications 350
1 Introduction 351
2 Production of Succinic Acid 352
3 Synthesis of PBS and Its Copolymers 354
3.1 Historical Outline and Recent Industrial Developments of PBS 354
3.2 Synthesis of PBS 356
3.2.1 Transesterification Polymerization 356
3.2.2 Direct Polymerization of Succinic Acid and Butanediol to Synthesize PBS 356
3.2.3 Condensation Polymerization Followed by Chain Extension 358
3.2.4 Lipase-Catalyzed Synthesis of PBS 359
3.3 Synthesis of PBS Copolymers and Branched PBS 360
4 Crystalline Structure and Properties of PBS and Its Copolymers 360
4.1 Crystalline Structure of PBS and Its Copolymers 360
4.2 Thermal Properties of PBS and Its Copolymers 364
4.3 Processing Properties of PBS 366
4.4 Mechanical Properties of PBS 368
4.5 Degradability of PBS and Its Copolymers 370
4.5.1 Nonenzymatic Hydrolytic Degradation 371
4.5.2 Enzymatic Hydrolysis of PBS and Its Copolymers 375
4.5.3 Environmental Biodegradation of PBS and Its Copolymers 377
5 Application of PBS 386
6 Concluding Remarks and Future Perspectives 387
References 388
Chen_Ch15.pdf 392
Microbial Ethanol, Its Polymer Polyethylene, and Applications 392
1 Introduction 393
2 Microbial Ethanol 393
2.1 Feedstock 394
2.2 Starch Ethanol 395
2.2.1 Pretreatment of Starch Material 395
2.2.2 Hydrolysis of Starch 396
2.2.3 Fermentation 396
2.2.3.1 Strains 396
2.2.3.2 Fermentation Technology 396
2.3 Sugarcane Ethanol 397
2.4 Cellulose Ethanol 397
2.4.1 Pretreatment of Cellulose Material 398
2.4.2 Hydrolysis and Saccharification of Cellulose 399
2.4.3 Fermentation 399
2.4.4 Purification 400
3 Ethylene via Dehydration of Microbial Ethanol 400
3.1 Background 400
3.2 Chemistry 401
3.2.1 Catalysts for Microbial Ethanol Dehydration 401
3.2.2 Mechanism for Microbial Ethanol Dehydration 402
3.3 Process Description 402
4 Polyethylene and Applications 404
4.1 Bio-Based Polyethylene Used in Films 405
4.2 Bio-Based Polyethylene Used in Pipe Plate 405
4.3 Bio-Based Polyethylene Used in Fiber 406
4.4 Bio-Based Polyethylene Used in Hollow Products 406
5 Concluding Remarks and Future Perspectives 406
References 407
Chen_Ch16.pdf 408
Microbial 1,3-Propanediol, Its Copolymerization with Terephthalate, and Applications 408
1 Introduction to 1,3-Propanediol 409
2 PDO Production by Chemical Methods 409
2.1 Degussa Process Using Propylene as a Feedstock 410
2.2 Preparation of PDO Using Ethylene Oxide as a Feedstock 410
2.3 Preparation of PDO via Selective Dehydroxylation of Glycerol 411
2.4 Other Processes Reported for the Preparation of PDO 412
3 PDO Production by Microbial Fermentation 413
3.1 Microorganisms and the Metabolic Pathway 413
3.1.1 Gene Overexpression of Key Enzymes 416
3.1.2 Knocking Out Genes Responsible for the Formation of Undesired By-Products 416
3.1.3 Strain Construction To Produce PDO from Glucose Directly 416
3.2 Fermentation Technology 417
3.2.1 Micro-Aerobic Fermentation of PDO 419
3.2.2 PDO Production Using Glucose as an Auxiliary Substrate 419
3.2.3 PDO Production by Crude Glycerol 419
3.2.4 Using Glucose as the Substrate To Produce PDO 420
3.3 Separation and Extraction 420
4 PTT Production with PDO 421
4.1 Introduction to PTT 422
4.2 The Production of PTT 423
4.3 The Properties of PTT Made from PDO 424
4.4 The Market and Applications for PTT 424
5 Outlook 425
References 426
Chen_Ch17.pdf 429
Microbial cis-3,5-Cyclohexadiene-1,2-diol, Its Polymer Poly(p-phenylene), and Applications 429
1 Introduction 430
2 Synthetic Approaches to PPP 430
3 Biocatalytic Production of cis-DHCD 432
3.1 Aromatic Oxidation in Microorganisms 432
3.2 Aromatic Dioxygenases 433
3.3 Synthesis of cis-DHCD 435
3.4 Recovery of cis-DHCD 438
4 Polymerization: From cis-DHCD to PPP 439
4.1 Derivatives of cis-DHCD 440
4.2 Polymerization of cis-DHCD Derivatives 440
4.3 Aromatization Process to PPP 441
5 Properties and Applications of PPP 442
6 Summary and Future Developments 444
References 445
Chen_Index.pdf 449
Microbial PHA Production from Waste Raw Materials 92
1 Introduction 93
1.1 General 93
1.2 The Increasing Interest in Polyhydroxyalkanoate Biopolyesters 94
1.3 Value-Added Utilization of ‘Waste PHAs’ 98
1.4 The Need for Cheap Substrates and Their Occurrence 99
1.5 Seasonal Availability of Waste Streams 101
1.6 By-Products of Waste Streams 102
2 Available Waste Streams in Different Global Regions 103
2.1 Cheap Nitrogen Sources for Production of Active Biomass 103
2.2 Waste Lipids 104
2.3 Waste Streams from Biofuel Production 106
2.4 Surplus Whey from the Dairy Industry 108
2.5 Lignocellulosic Wastes 112
2.6 Starch 115
2.7 Materials from the Sugar Industry 116
2.8 Lactic Acid as a Versatile Intermediate Towards Follow-Up Products 119
3 Concluding Remarks and Future Perspectives 120
References 121

Erscheint lt. Verlag 2.12.2009
Reihe/Serie Microbiology Monographs
Zusatzinfo X, 450 p. 145 illus.
Verlagsort Berlin
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Naturwissenschaften Biologie Mikrobiologie / Immunologie
Technik
Schlagworte Bacteria • Biodegradability • biofuel • Biofuels • Bioplastics • Genetic Engineering • Polybutylene succinate • Polyhydroxyalkanoates • Polylactic acid • Polymer
ISBN-10 3-642-03287-7 / 3642032877
ISBN-13 978-3-642-03287-5 / 9783642032875
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
64,99
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
64,99
Skript 7 Enzyme; Vitamine; Organstoffwechsel; Molekularbiologie

von Endspurt Vorklinik

eBook Download (2023)
Georg Thieme Verlag KG
22,99