The Epothilones: An Outstanding Family of Anti-Tumor Agents (eBook)
IX, 260 Seiten
Springer Wien (Verlag)
978-3-211-78207-1 (ISBN)
Contents 6
List of Contributors 10
1. Preface 11
2. General Aspects 15
2.1. History of Epothilone Discovery and Development 15
2.2. Natural Epothilones 26
3. Biosynthesis and Heterologous Production of Epothilones 39
3.1. Introduction 39
3.2. Feeding Studies and the Discovery of Natural Epothilone Variants 42
3.3. Identification of the Epothilone Biosynthesis Gene Cluster 46
3.4. Studies in Vitro into the Biochemistry of Epothilone Assembly 49
3.5. Heterologous Expression and Genetic Engineering of the Epothilone Biosynthesis Gene Cluster 53
3.6. Nutrient Regulation in S. cellulosum and M. xanthus 57
3.7. Conclusions 59
References 60
4. Total Synthesis of Epothilones A–F 65
4.1. Introduction 66
4.2. Synthesis Approaches to both the Epothilone A/ C- and B/ D- Series 68
4.3. Syntheses of Epothilone A/C (1a, 2a) 97
4.4. Synthesis of Epothilones B/D (1b, 2b) 107
4.5. Syntheses of Fragments 122
4.6. Semisynthetic Degradation/Reconstruction of 2b ( 117, 118) 128
4.7. Syntheses of Epothilones E and F (1c, 1d) and Their 12,13- Deoxy Derivatives ( 2c, 2d) ( 126) 129
4.8. Nicolaou’s Synthesis of Epothilone Analogues ( 1, 129– 133) 129
4.9. Conclusion and Industrial Application ( ZK- Epo ( Sagopilone)) 133
5. Semisynthetic Derivatives of Epothilones 145
5.1. Introduction 145
5.2. The O16–C8 Sector (‘‘Polyketide Sector’’) 147
5.3. Modification of the Epoxide Moiety 151
5.4. Side Chain Modifications 156
5.5. Removal/Incorporation of the C13–O16 Segment 160
5.6. Conclusions 163
References 164
6. Preclinical Pharmacology and Structure- Activity Studies of Epothilones 167
6.1. Introduction 167
6.2. In vitro Pharmacology of Epo B 171
6.3. In vivo Pharmacology of Epo B 180
6.4. Epothilone Analogs and SAR Studies 181
6.5. Structural Studies and Pharmacophore Modeling 216
6.6. Conclusions 219
7. Clinical Studies with Epothilones 231
7.1. Introduction 231
7.2. Patupilone (EPO906, Epo B) 233
7.3. Ixabepilone 234
7.4. KOS-862 238
7.5. BMS-310705 239
7.6. KOS-1584 240
7.7. Sagopilone (ZK-Epo) 242
7.8. ABJ879 242
7.9. Conclusions 243
Author Index 249
Subject Index 261
2. General Aspects (p. 5-6)
Gerhard Höfle
Helmholtz-Zentrum für Infektionsforschung (formerly: GBF, Gesellschaft für Biotechnologische Forschung), Braunschweig, Germany
2.1. History of Epothilone Discovery and Development
2.1.1. The Early Days
Epothilone is a microbial product, and thus its history may be traced back to the discovery of the respective microbe, Sorangium cellulosum, a bacterium belonging to the taxonomic group of myxobacteria, which originally has been described by Roland Thaxter in 1892 (1). Today this group of organisms comprises around 40 species, one of which is Sorangium cellulosum. For a long time, myxobacteria were only known for their gliding motility and sophisticated life cycle, although it had been occasionally speculated that they might produce secondarymetabolites like actinomycetes or bacilli (2).
In 1975 Hans Reichenbach and his group at the German Centre for Biotechnology (GBF, now called the Helmholtz Centre for Infection Research) set out to isolate strains of myxobacteria from soil samples collected all over the world, and to examine their secondary metabolism. In 1978, while work was already ongoing, I joined them and took over the chemistry part. In the same year the first structure of a myxobacterial metabolite, ambruticin, was published by a group from Warner-Lambert (3) making us very confident of being on the right track. Ambruticin had been isolated from a Sorangium cellulosum strain, and was identified as a unique cyclopropane polyketide structure exhibiting potentially useful antifungal properties. Ambruticin and its derivatives had been developed for medical application for some time, and recently gained new interest (4). Meanwhile we had been working at GBF quite successfully with the easily handled Myxococcus, Corallococcus, and Stigmatella strains, and only slowly shifted our focus to Sorangium. It took us considerable time to establish large-scale isolation and cultivation procedures of this slowly growing species. As soon as several hundred strains of Sorangium cellulosum had been accumulated by 1985, the screening for biological activity became productive, and a constant flow of unusual secondary metabolites came into our hands. Up to now, approximately 50 novel basic structures have been isolated from the various strains of this species, often with outstanding antifungal properties. The predominance of antifungal activity may be attributed to the fact that Sorangium cellulosum grows on cellulose as carbon source, and thus has to compete through chemical warfare (and other means) with fungi for its ecological niche.
In July 1985 Sorangium cellulosum, strain So ce90, the first producer of epothilone, was isolated by Hans Reichenbach from a soil sample collected at the banks of the river Zambesi in southern Africa in August 1980. Only two years after isolation, the strain was introduced in an antifungal screening of Sorangium strains by Klaus Gerth and identified as one of several hits in January 1987. Later, Florenz Sasse, responsible for cell culture tests, noticed high cytotoxicity of the culture extract. From these and other preliminary tests we were dealing with a new compound and Norbert Bedorf from the chemistry group immediately started to isolate the compound and elucidate its structure. Guided by biological activity, he isolated two closely related antifungal compounds later named epothilone A and B (5), and a structurally non-related family of polyene carboxylic acids, later named spirangiens inMay 1987 (5, 6).
Erscheint lt. Verlag | 29.9.2009 |
---|---|
Reihe/Serie | Fortschritte der Chemie organischer Naturstoffe Progress in the Chemistry of Organic Natural Products | Fortschritte der Chemie organischer Naturstoffe Progress in the Chemistry of Organic Natural Products |
Co-Autor | Karl-Heinz Altmann, Gerhard Höfle, Rolf Müller, Kathrin Prantz |
Mitarbeit |
Herausgeber (Serie): A. Douglas Kinghorn |
Zusatzinfo | IX, 260 p. |
Verlagsort | Vienna |
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Medizinische Fachgebiete ► Onkologie |
Medizin / Pharmazie ► Studium | |
Naturwissenschaften ► Chemie ► Organische Chemie | |
Technik | |
Schlagworte | anti-tumour agent • anti-tumour drug • Apoptosis • biochemistry • Chemistry • epothilone • Expression • Genetic Engineering |
ISBN-10 | 3-211-78207-9 / 3211782079 |
ISBN-13 | 978-3-211-78207-1 / 9783211782071 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich