Stochastic Optimization Methods (eBook)

(Autor)

eBook Download: PDF
2005 | 2005
XIII, 314 Seiten
Springer Berlin (Verlag)
978-3-540-26848-2 (ISBN)

Lese- und Medienproben

Stochastic Optimization Methods - Kurt Marti
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Optimization problems arising in practice involve random parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, deterministic substitute problems are needed. Based on the distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Deterministic and stochastic approximation methods and their analytical properties are provided: Taylor expansion, regression and response surface methods, probability inequalities, First Order Reliability Methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation methods, differentiation of probability and mean value functions. Convergence results of the resulting iterative solution procedures are given.

Preface 5
Contents 9
Part I Basic Stochastic Optimization Methods 15
1 Decision/Control Under Stochastic Uncertainty 16
1.1 Introduction 16
1.2 Deterministic Substitute Problems: Basic Formulation 18
2 Deterministic Substitute Problems in Optimal Decision Under Stochastic Uncertainty 22
2.1 Optimum Design Problems with Random Parameters 22
2.2 Basic Properties of Substitute Problems 31
2.3 Approximations of Deterministic Substitute Problems in Optimal Design 33
2.4 Applications to Problems in Quality Engineering 41
2.5 Approximation of Probabilities - Probability Inequalities 42
2.6 Construction of State Functions in Structural Analysis and Design 51
Part II Differentiation Methods 57
3 Differentiation Methods for Probability and Risk Functions 58
3.1 Introduction 58
3.2 Transformation Method: Differentiation by Using an Integral Transformation 61
3.3 The Differentiation of Structural Reliabilities 69
3.4 Extensions 71
3.5 Computation of Probabilities and its Derivatives by Asymptotic Expansions of Integral of Laplace Type 76
3.6 Integral Representations of the Probability Function P(x) and its Derivatives 86
3.7 Orthogonal Function Series Expansions I: Expansions in Hermite Functions, Case m = 1 89
3.8 Orthogonal Function Series 103
3.9 Orthogonal Function Series Expansions III: Expansions in Trigonometric, Legendre and Laguerre Series 105
Part III Deterministic Descent Directions 108
4 Deterministic Descent Directions and Efficient Points 110
4.1 Convex Approximation 110
4.2 Computation of Descent Directions in Case of Normal Distributions 116
4.3 Efficient Solutions ( Points) 128
4.4 Descent Directions in Case of Elliptically Contoured Distributions 132
4.5 Construction of Descent Directions by Using Quadratic Approximations of the Loss Function 135
Part IV Semi-Stochastic Approximation Methods 141
5 RSM-Based Stochastic Gradient Procedures 142
5.1 Introduction 142
5.2 Gradient Estimation Using the Response Surface Methodology (RSM) 144
5.3 Estimation of the Mean Square (Mean Functional) Error 155
5.4 Convergence Behavior of Hybrid Stochastic Approximation Methods 160
5.5 Convergence Rates of Hybrid Stochastic Approximation Procedures 166
6 Stochastic Approximation Methods with Changing Error Variances 190
6.1 Introduction 190
6.2 Solution of Optimality Conditions 191
6.3 General Assumptions and Notations 192
6.4 Preliminary Results 196
6.5 General Convergence Results 203
6.6 Realisation of Search Directions 217
6.7 Realization of Adaptive Step Sizes 232
6.8 A Special Class of Adaptive Scalar Step Sizes 249
Part V Technical Applications 264
7 Approximation of the Probability of Failure/Survival in Plastic Structural Analysis and Optimal Plastic Design 266
7.1 Introduction 266
7.2 Probability of Survival/Failure p8,Pf 267
7.3 Approximation of ps,Pf by Linearization of the Transformed Limit State Function 270
7.4 Computation of the ß-Point z 275
7.5 Trusses 278
7.6 Reliability- Based Design Optimization ( RBDO) 282
Part VI Appendix 286
A Sequences, Series and Products 288
A.1 Mean Value Theorems for Deterministic Sequences 288
A.2 Iterative Solution of a Lyapunov Matrix Equation 296
B Convergence Theorems for Stochastic Sequences 300
B.1 A Convergence Result of Robbins-Siegmund 300
B.2 Convergence in the Mean 303
B.3 The Strong Law of Large Numbers for Dependent Matrix Sequences 305
B.4 A Central Limit Theorem for Dependent Vector Sequences 306
C Tools from Matrix Calculus 308
C.1 Miscellaneous 308
C. 2 The v. Mises- Procedure in Case of Errors 309
Index 322

Erscheint lt. Verlag 5.12.2005
Zusatzinfo XIII, 314 p. 14 illus.
Verlagsort Berlin
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Technik
Wirtschaft Allgemeines / Lexika
Schlagworte Calculus • Control • Optimization • Optimization Problems • response surface methodology • stochastic approximation • stochastic optimization • Uncertainty
ISBN-10 3-540-26848-0 / 3540268480
ISBN-13 978-3-540-26848-2 / 9783540268482
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
24,90