Nonholonomic Mechanics and Control
Seiten
2010
|
Softcover reprint of the original 1st ed. 2003
Springer-Verlag New York Inc.
978-1-4419-3043-9 (ISBN)
Springer-Verlag New York Inc.
978-1-4419-3043-9 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Our goal in this book is to explore some of the connections between control theory and geometric mechanics; that is, we link control theory with a g- metric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and in particular with the theory of mechanical systems s- ject to motion constraints. This synthesis of topics is appropriate, since there is a particularly rich connection between mechanics and nonlinear control theory. While an introduction to many important aspects of the mechanics of nonholonomically constrained systems may be found in such sources as the monograph of Neimark and Fufaev [1972], the geometric view as well as the control theory of such systems remains largely sc- tered through various research journals. Our aim is to provide a uni?ed treatment of nonlinear control theory and constrained mechanical systems that will incorporate material that has not yet made its way into texts and monographs. Mechanicshastraditionallydescribedthebehavioroffreeandinteracting particles and bodies, the interaction being described by potential forces. It encompasses the Lagrangian and Hamiltonian pictures and in its modern form relies heavily on the tools of di?erential geometry (see, for example, Abraham and Marsden [1978]and Arnold [1989]). From our own point of view,ourpapersBloch,Krishnaprasad,Marsden,andMurray[1996],Bloch and Crouch [1995], and Baillieul [1998] have been particularly in?uential in the formulations presented in this book. Control Theory and Nonholonomic Systems. Control theory is the theory of prescribing motion for dynamical systems rather than describing vi Preface their observed behavior.
Mathematical Preliminaries.- Basic Concepts in Geometric Mechanics.- to Aspects of Geometric Control Theory.- Nonholonomic Mechanics.- Control of Mechanical and Nonholonomic Systems.- Optimal Control.- Stability of Nonholonomic Systems.- Energy-Based Methods for Stabilization Controlled Lagrangian Systems.
Erscheint lt. Verlag | 1.12.2010 |
---|---|
Reihe/Serie | Interdisciplinary Applied Mathematics ; 24 |
Mitarbeit |
Assistent: J. Baillieul, P. Crouch, J. Marsden |
Zusatzinfo | 40 Illustrations, black and white; XIX, 484 p. 40 illus. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
ISBN-10 | 1-4419-3043-4 / 1441930434 |
ISBN-13 | 978-1-4419-3043-9 / 9781441930439 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
was jeder über Informatik wissen sollte
Buch (2024)
Springer Vieweg (Verlag)
37,99 €
Eine Einführung in die Systemtheorie
Buch | Softcover (2022)
UTB (Verlag)
25,00 €