Für diesen Artikel ist leider kein Bild verfügbar.

Electrical Characterization of Organic Electronic Materials and Devices

Software / Digital Media
316 Seiten
2009
Wiley-Blackwell (Hersteller)
978-0-470-75016-2 (ISBN)
121,38 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
Provides insights into the electronic properties and measurement techniques for low-mobility electronic devices; characterizes the thin-film transistor using its own model; and presents both how to perform electrical measurements of organic and low-mobility materials and how to extract important information from these measurements.
Electrical Characterization of Organic Electronic Materials and Devices gives new insights into the electronic properties and measurement techniques for low-mobility electronic devices; characterizes the thin-film transistor using its own model; links the phenomena seen in different device structures and different measurement techniques; presents clearly both how to perform electrical measurements of organic and low-mobility materials and how to extract important information from these measurements; and provides a much-needed theoretical foundation for organic electronic.

Peter Stallinga is a professor at the Universidade do Algarve (Portugal) in the Department of Electronic Engineering and Informatica. He obtained his PhD in Physics at the University of Amsterdam (The Netherlands). From 1994 to 1995, Professor Stallinga was a postdoctoral researcher at the University of California at Berkeley (USA). He then moved to Denmark, where he worked as a postdoctoral researcher at the University of Aarhus. From 1997 to 1999, he was a postdoctoral researcher at the Universidade do Algarve. His main area of scientific research is the physics of electronic materials and other areas of interest include informatics, electronics, and biotechnology. He is an experienced lecturer and parts of the material in this book have been given as lectures at the summer school of a European network on organic electronics (SELOA and MONA-LISA).

Preface. 1 General concepts. 1.1 Introduction. 1.2 Conduction mechanism. 1.3 Chemistry and the energy diagram. 1.4 Disordered materials and the Meyer-Neldel Rule. 1.5 Devices. 1.6 Optoelectronics/photovoltaics. 2 Two-terminal devices: DC current. 2.1 Conductance. 2.2 DC current of a Schottky barrier. 2.3 DC measurements. 3 Two-terminal devices: Admittance spectroscopy. 3.1 Admittance spectroscopy. 3.2 Geometrical capacitance. 3.3 Equivalent circuits. 3.4 Resistor; SCLC. 3.5 Schottky diodes. 3.6 MIS diodes. 3.7 MIS tunnel diode. 3.8 Noise measurements. 4 Two-terminal devices: Transient techniques. 4.1 Kinetics: Emission and capture of carriers. 4.2 Current transient spectroscopy. 4.3 Thermally stimulated current. 4.4 Capacitance transient spectroscopy. 4.5 Deep-level transient spectroscopy. 4.6 Q-DLTS. 5 Time-of-flight. 5.1 Introduction. 5.2 Drift transient. 5.3 Diffusive transient. 5.4 Violating einstein's relation. 5.5 Multi-trap-and-release. 5.6 Anomalous transients. 5.7 High current (space charge) transients. 5.8 Summary of the ToF technique. 6 Thin-film transistors. 6.1 Field-effect transistors. 6.2 MOS-FET. 6.3 Introducing TFTs. 6.4 Basic model. 6.5 Justification for the two-dimensional approach. 6.6 Ambipolar materials and devices. 6.7 Contact effects and other simple nonidealities. 6.8 Metallic contacts in TFTs. 6.9 Normally-on TFTs. 6.10 Effects of traps. 6.11 Admittance spectroscopy for the determination of the mobility in TFTs. 6.12 Summary of TFT measurements. 6.13 Diffusion transistor. Appendix A A Derivation of Equations (2.21), (2.25), (6.95) and (6.101). Bibliography. Index.

Erscheint lt. Verlag 25.9.2009
Verlagsort Hoboken
Sprache englisch
Maße 161 x 237 mm
Gewicht 590 g
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-470-75016-2 / 0470750162
ISBN-13 978-0-470-75016-2 / 9780470750162
Zustand Neuware
Haben Sie eine Frage zum Produkt?