Machine Learning in Educational Sciences -

Machine Learning in Educational Sciences (eBook)

Approaches, Applications and Advances

Myint Swe Khine (Herausgeber)

eBook Download: PDF
2024 | 2024
XVII, 384 Seiten
Springer Nature Singapore (Verlag)
978-981-99-9379-6 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This comprehensive volume investigates the untapped potential of machine learning in educational settings. It examines the profound impact machine learning can have on reshaping educational research. Each chapter delves into specific applications and advancements, sheds light on theory-building, and multidisciplinary research, and identifies areas for further development. It encompasses various topics, such as machine-based learning in psychological assessment. It also highlights the power of machine learning in analyzing large-scale international assessment data and utilizing natural language processing for science education. With contributions from leading scholars in the field, this book provides a comprehensive, evidence-based framework for leveraging machine-learning approaches to enhance educational outcomes. The book offers valuable insights and recommendations that could help shape the future of educational sciences. 



Myint Swe Khine currently teaches at the School of Education, Curtin University, Australia. He has more than 30 years of experience in teacher education. He received Master's degrees from the University of Southern California, USA, University of Surrey, UK, and the University of Leicester, UK, and a Doctoral degree from Curtin University, Australia. He worked at the National Institute of Education, Nanyang Technological University, Singapore, and was a Professor at Emirates College for Advanced Education in the United Arab Emirates. He has wide-ranging research interests in teacher education, science education, learning sciences, psychometrics, measurement, assessment, and evaluation. He is a member of the Editorial Advisory Board of several international academic journals. Throughout his career, he has published over 40 edited books. The most recent volumes include Methodology for Multilevel Modelling in Education Research: Concepts and Applications (Springer, 2022), and Rhizomatic Metaphor: Legacy of Deleuze and Guattari in Education and Learning (Springer, 2023).


This comprehensive volume investigates the untapped potential of machine learning in educational settings. It examines the profound impact machine learning can have on reshaping educational research. Each chapter delves into specific applications and advancements, sheds light on theory-building, and multidisciplinary research, and identifies areas for further development. It encompasses various topics, such as machine-based learning in psychological assessment. It also highlights the power of machine learning in analyzing large-scale international assessment data and utilizing natural language processing for science education. With contributions from leading scholars in the field, this book provides a comprehensive, evidence-based framework for leveraging machine-learning approaches to enhance educational outcomes. The book offers valuable insights and recommendations that could help shape the future of educational sciences. 
Erscheint lt. Verlag 24.2.2024
Zusatzinfo XVII, 384 p. 97 illus., 77 illus. in color.
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Sozialwissenschaften Pädagogik Allgemeines / Lexika
Sozialwissenschaften Pädagogik Bildungstheorie
Schlagworte Artificial Intelligence in Education • Data Science in Education • educational data mining • Learning Analytics • machine learning • Natural Language Processing in Education • Predictive Modeling in Education
ISBN-10 981-99-9379-2 / 9819993792
ISBN-13 978-981-99-9379-6 / 9789819993796
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
24,99