Guide to Teaching Data Science (eBook)

An Interdisciplinary Approach

, (Autoren)

eBook Download: PDF
2023 | 2023
XXVII, 321 Seiten
Springer International Publishing (Verlag)
978-3-031-24758-3 (ISBN)

Lese- und Medienproben

Guide to Teaching Data Science - Orit Hazzan, Koby Mike
Systemvoraussetzungen
74,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Data science is a new field that touches on almost every domain of our lives, and thus it is taught in a variety of environments. Accordingly, the book is suitable for teachers and lecturers in all educational frameworks: K-12, academia and industry.

This book aims at closing a significant gap in the literature on the pedagogy of data science. While there are many articles and white papers dealing with the curriculum of data science (i.e., what to teach?), the pedagogical aspect of the field (i.e., how to teach?) is almost neglected. At the same time, the importance of the pedagogical aspects of data science increases as more and more programs are currently open to a variety of people.

This book provides a variety of pedagogical discussions and specific teaching methods and frameworks, as well as includes exercises, and guidelines related to many data science concepts (e.g., data thinking and the data science workflow), main machine learning algorithms and concepts (e.g., KNN, SVM, Neural Networks, performance metrics, confusion matrix, and biases) and data science professional topics (e.g., ethics, skills and research approach).

Professor Orit Hazzan is a faculty member at the Technion's Department of Education in Science and Technology since October 2000. Her research focuses on computer science, software engineering and data science education. Within this framework, she studies the cognitive and social processes on the individual, the team and the organization levels, in all kinds of organizations.

Dr. Koby Mike is a Ph.D. graduate from the Technion's Department of Education in Science and Technology under the supervision of Professor Orit Hazzan. He continued his post-doc research on data science education at the Bar-Ilan University, and obtained a B.Sc. and an M.Sc. in Electrical Engineering from Tel Aviv University.



Professor Orit Hazzan is a faculty member at the Technion's Department of Education in Science and Technology since October 2000. Her research focuses on computer science, software engineering and data science education. Within this framework she researches cognitive and social processes on the individual, the team and the organization levels, in all kinds of organizations. She has published about 130 papers in professional refereed journals and conference proceedings, and seven books. In 2007-2010 she chaired the High School Computer Science Curriculum Committee assigned by the Israeli Ministry of Education. In 2011-2015 Hazzan was the faculty Dean. From 2017 to 2019, Hazzan served the Technion Dean of Undergraduate Studies. 

Dr. Koby Mike is a Ph.D. graduate from the Technion's Department of Education in Science and Technology under the supervision of Professor Orit Hazzan. He continued his a post-doc research on data science education at the Bar-Ilan University, and retains B.Sc. and an M.Sc. in Electrical Engineering from Tel Aviv University. After two decades of professional career is the Israeli hi-tech industry, he returned to academia for his doctoral studies on data science education. As part of is research, Koby developed and taught several data science programs for high school students, high school computer science teachers, and graduate students and researchers in social sciences and digital humanities.
Erscheint lt. Verlag 20.3.2023
Zusatzinfo XXVII, 321 p. 43 illus., 30 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Sozialwissenschaften Pädagogik
Schlagworte Computer Science Education • Data Science Education • Hands-on Approach • Interdesciplinarity • machine learning • Statistics
ISBN-10 3-031-24758-2 / 3031247582
ISBN-13 978-3-031-24758-3 / 9783031247583
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
18,68