Data Mining -  Jiawei Han,  Jian Pei,  Hanghang Tong

Data Mining (eBook)

Concepts and Techniques
eBook Download: PDF | EPUB
2022 | 4. Auflage
752 Seiten
Elsevier Science (Verlag)
978-0-12-811761-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
62,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Data Mining: Concepts and Techniques, Fourth Edition introduces concepts, principles, and methods for mining patterns, knowledge, and models from various kinds of data for diverse applications. Specifically, it delves into the processes for uncovering patterns and knowledge from massive collections of data, known as knowledge discovery from data, or KDD. It focuses on the feasibility, usefulness, effectiveness, and scalability of data mining techniques for large data sets. After an introduction to the concept of data mining, the authors explain the methods for preprocessing, characterizing, and warehousing data. They then partition the data mining methods into several major tasks, introducing concepts and methods for mining frequent patterns, associations, and correlations for large data sets; data classificcation and model construction; cluster analysis; and outlier detection. Concepts and methods for deep learning are systematically introduced as one chapter. Finally, the book covers the trends, applications, and research frontiers in data mining. - Presents a comprehensive new chapter on deep learning, including improving training of deep learning models, convolutional neural networks, recurrent neural networks, and graph neural networks - Addresses advanced topics in one dedicated chapter: data mining trends and research frontiers, including mining rich data types (text, spatiotemporal data, and graph/networks), data mining applications (such as sentiment analysis, truth discovery, and information propagattion), data mining methodologie and systems, and data mining and society - Provides a comprehensive, practical look at the concepts and techniques needed to get the most out of your data - Visit the author-hosted companion site, https://hanj.cs.illinois.edu/bk4/ for downloadable lecture slides and errata

Jiawei Han is Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Well known for his research in the areas of data mining and database systems, he has received many awards for his contributions in the field, including the 2004 ACM SIGKDD Innovations Award. He has served as Editor-in-Chief of ACM Transactions on Knowledge Discovery from Data, and on editorial boards of several journals, including IEEE Transactions on Knowledge and Data Engineering and Data Mining and Knowledge Discovery.
Data Mining: Concepts and Techniques, Fourth Edition introduces concepts, principles, and methods for mining patterns, knowledge, and models from various kinds of data for diverse applications. Specifically, it delves into the processes for uncovering patterns and knowledge from massive collections of data, known as knowledge discovery from data, or KDD. It focuses on the feasibility, usefulness, effectiveness, and scalability of data mining techniques for large data sets. After an introduction to the concept of data mining, the authors explain the methods for preprocessing, characterizing, and warehousing data. They then partition the data mining methods into several major tasks, introducing concepts and methods for mining frequent patterns, associations, and correlations for large data sets; data classificcation and model construction; cluster analysis; and outlier detection. Concepts and methods for deep learning are systematically introduced as one chapter. Finally, the book covers the trends, applications, and research frontiers in data mining. - Presents a comprehensive new chapter on deep learning, including improving training of deep learning models, convolutional neural networks, recurrent neural networks, and graph neural networks- Addresses advanced topics in one dedicated chapter: data mining trends and research frontiers, including mining rich data types (text, spatiotemporal data, and graph/networks), data mining applications (such as sentiment analysis, truth discovery, and information propagattion), data mining methodologie and systems, and data mining and society- Provides a comprehensive, practical look at the concepts and techniques needed to get the most out of your data- Visit the author-hosted companion site, https://hanj.cs.illinois.edu/bk4/ for downloadable lecture slides and errata
PDFPDF (Adobe DRM)
Größe: 19,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 47,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
49,90
Achieve data excellence by unlocking the full potential of MongoDB

von Marko Aleksendrić; Arek Borucki; Leandro Domingues …

eBook Download (2024)
Packt Publishing (Verlag)
53,99