Data Visualization (eBook)
XII, 179 Seiten
Springer Singapore (Verlag)
978-981-15-2282-6 (ISBN)
This book discusses the recent trends and developments in the fields of information processing and information visualization. In view of the increasing amount of data, there is a need to develop visualization techniques to make that data easily understandable. Presenting such approaches from various disciplines, this book serves as a useful resource for graduates.
Foreword 5
Preface 7
Contents 9
About the Editors 10
Narrative and Text Visualization: A Technique to Enhance Teaching Learning Process in Higher Education 12
1 Introduction 12
2 Model for Integrating Narrative and Text Visualization 13
3 Application of Narrative and Text Visualization 15
3.1 Implementation Narrative Visualization 15
3.2 Implementation of Text Visualization 18
3.3 Integration of Narrative and Text Visualization 21
4 Conclusion 23
References 24
Data Visualization and Analysis for Air Quality Monitoring Using IBM Watson IoT Platform 25
1 Big Data Analytics 25
1.1 Applications of Big Data Analytics 26
1.2 Benefits of Big Data Analytics 27
1.3 Challenges of Big Data Analytics 27
2 Data Visualization 28
2.1 Process 30
3 Air Quality Index 31
4 IBM Watson IoT Platform: Turn Numbers into Narratives 34
5 Visualizing Using IBM Watson IoT Platform 36
6 Conclusion 42
References 42
Comparative Analysis of Tools for Big Data Visualization and Challenges 43
1 Introduction 44
1.1 Data Visualization 44
1.2 The Need for Data Visualization 45
1.3 Some Traditional Tools for Data Visualization 46
1.4 The Weaknesses of These Tools 48
2 Visualizing Big Data 48
2.1 Brief Introduction to Big Data 48
2.2 Characteristics of Big Data 50
2.3 Handling Large Data Volumes 51
2.4 Visualizing Semi-structured and Unstructured Data 53
3 Visualization Tools for Big Data 55
3.1 Drawbacks of the Traditional Tools 55
3.2 Tools Available for Data Visualization in the Context of Big Data 56
3.3 Technical Competencies of These Tools 57
4 Challenges 58
4.1 Gaps in Research in Finding Tools for Visualization of Big Data 58
5 Future Scope 59
6 Conclusion 59
References 60
Data Visualization Techniques: Traditional Data to Big Data 63
1 Introduction 63
2 Importance of Visualization 65
3 Factors Affecting Data Visualization 65
4 Traditional Data Visualization Techniques 66
4.1 Line Charts 67
4.2 Pie Charts 67
4.3 Bar Charts 68
4.4 Area Chart 68
4.5 Bubble Chart 69
4.6 Scattered Plot 69
4.7 Tree Maps 70
4.8 Heap Maps 70
5 Visualizing Big Data—Tools and Techniques 71
5.1 Word Clouds 71
5.2 Symbol Maps 72
5.3 Connectivity Charts 73
6 Visualization in Agile Software Development 74
6.1 The Portfolio Wall 76
6.2 The Kanban Board 77
6.3 The Burndown Chart 79
6.4 Epic and Story Mapping 81
7 Challenges of Big Data Visualization 82
8 Choosing Appropriate Visualization Method 83
9 Conclusion 83
10 Summary 84
Data Visualization: Visualization of Social Media Marketing Analysis Data to Generate Effective Business Revenue Model 85
1 Introduction 85
2 Background 86
3 Purpose 87
4 Dataset Description 87
5 Methodology 88
5.1 Importing the Dataset and Initial Analysis 88
5.2 Constructing the Correlation Matrix and Corrgram 88
5.3 Hypothesis Testing and T-Test 90
5.4 Visualizing the Sales and Marketing Data 94
6 Issues, Controversies, and Problems 97
6.1 The Issues in Retrieval 97
6.2 Issues in Getting Access to the Marketing Data for Visualization 97
6.3 Controversies Where Sales Data Was Gathered Illegitimately 97
7 Problems in Prediction and Visualization 98
8 Solutions 98
9 Results 99
10 Future Research Directions 99
10.1 Parallel Coordinates 100
10.2 Alluvial Diagrams 100
10.3 Circle Packing 100
11 Conclusion 101
References 102
Applications of Visualization Techniques 103
1 Why Do We Use Data Visualization? 104
2 Applications of Data Visualization in the Real World 104
2.1 Data Visualization for In-House Communication and Client Reporting—Business Intelligence 104
2.2 Marketing Content and Data Visualization 105
2.3 Data Visualization for Text Mining—Semantic Technology 105
2.4 Collaborative Visual Analysis—Exploring and Making Sense of Data with Others 106
3 Data Visualization Techniques 106
4 Case Study 111
4.1 Event Detection Using Social Text Streams with Data Visualization 112
4.2 Political Event Detection from Social Text Streams with Data Visualization 114
4.3 Problem Statement 114
4.4 Solution 115
5 Conclusion and Insights Obtained 123
Evaluation of IoT Data Visualization Tools and Techniques 125
1 Introduction 126
2 Internet of Things 127
3 Data Visualization 128
4 Internet of Things with Data Visualization 131
5 Data Visualization Tools and Techniques for IoT 134
5.1 Different Charts for Data Visualization 134
5.2 Tools for Source Credible Data 137
5.3 Tools for Creating Data Visualizations 139
5.4 Platforms, Tools, and Libraries for IoT Data Visualization 146
6 Conclusion 147
References 147
Data Visualization: Experiment to Impose DDoS Attack and Its Recovery on Software-Defined Networks 150
1 Introduction 151
2 Traditional Network 152
3 SDN Architecture 153
4 Architecture of Floodlight Controller 153
5 Methodologies and Tools 154
6 Implementation of DDoS Attack on SDN and Recovery 156
7 Result Analysis 162
8 Conclusion 168
References 168
Data Visualization of Software-Defined Networks During Load Balancing Experiment Using Floodlight Controller 170
1 Introduction 170
2 Implementing Floodlight Controller on SDN 171
3 Developing SDN-Based Scenario 172
4 Implementing Load Balancing 175
5 Experimental Issues and Resolution 178
6 Graph Generation 178
7 Performance Analysis 183
8 Conclusion 187
References 187
Erscheint lt. Verlag | 3.3.2020 |
---|---|
Zusatzinfo | XII, 179 p. 142 illus., 126 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Netzwerke ► Sicherheit / Firewall | |
Informatik ► Office Programme ► Outlook | |
Informatik ► Theorie / Studium ► Algorithmen | |
Sozialwissenschaften ► Politik / Verwaltung ► Staat / Verwaltung | |
Schlagworte | Big Data • data structures • Data Visualization • Decision Making • machine learning • multidimensional data |
ISBN-10 | 981-15-2282-0 / 9811522820 |
ISBN-13 | 978-981-15-2282-6 / 9789811522826 |
Haben Sie eine Frage zum Produkt? |
Größe: 11,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich