Plasma Science and Technology for Emerging Economies -

Plasma Science and Technology for Emerging Economies (eBook)

An AAAPT Experience

Rajdeep Singh Rawat (Herausgeber)

eBook Download: PDF
2017 | 1st ed. 2017
VI, 805 Seiten
Springer Singapore (Verlag)
978-981-10-4217-1 (ISBN)
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book highlights plasma science and technology-related research and development work at institutes and universities networked through Asian African Association for Plasma Training (AAAPT) which was established in 1988. The AAAPT, with 52 member institutes in 24 countries, promotes the initiation and intensification of plasma research and development through cooperation and technology sharing.
 
With 13 chapters on fusion-relevant, laboratory and industrial plasmas for wide range of applications and basic research and a chapter on AAAPT network, it demonstrates how, with collaborations, high-quality, industrially relevant academic and scientific research on fusion, industrial and laboratory plasmas and plasma diagnostics can be successfully pursued in small research labs.
 
These plasma sciences and technologies include pioneering breakthroughs and applications in (i) fusion relevant research in the quest for long-term, clean energy source development using high-temperature, high- density plasmas and (ii) multibillion-dollar, low-temperature, non-equilibrium and thermal industrial plasmas used in processing, synthesis and electronics.




Rajdeep Singh Rawat received his PhD in Physics from the University of Delhi. He is currently an associate professor of Physics and Deputy Head (Research and Postgraduate Matters) at NSSE/NIE, Nanyang Technological University (NTU), Singapore. He is also the President of Asian African Association for Plasma Training (AAAPT). He is an experimental plasma physicist with expertise in dense plasma focus (DPF), pulsed laser deposition (PLD) and plasma enhanced chemical vapor deposition (PECVD) facilities for fundamental studies on plasma dynamics and radiation/particle emission as well as for wide ranges of applications. He has also worked extensively on a wide variety of applications of these devices, such as high repetition rate portable neutron source, radioisotopes synthesis, soft x-ray lithography, soft and hard x-ray imaging, and pioneered the field of material modification and nano-structured material synthesis using plasma focus devices. He leads the plasma radiation sources lab group at the NTU, secured 28 local/international/industrial research grants, and published over 190 journal papers.

This book highlights plasma science and technology-related research and development work at institutes and universities networked through Asian African Association for Plasma Training (AAAPT) which was established in 1988. The AAAPT, with 52 member institutes in 24 countries, promotes the initiation and intensification of plasma research and development through cooperation and technology sharing. With 13 chapters on fusion-relevant, laboratory and industrial plasmas for wide range of applications and basic research and a chapter on AAAPT network, it demonstrates how, with collaborations, high-quality, industrially relevant academic and scientific research on fusion, industrial and laboratory plasmas and plasma diagnostics can be successfully pursued in small research labs. These plasma sciences and technologies include pioneering breakthroughs and applications in (i) fusion relevant research in the quest for long-term, clean energysource development using high-temperature, high- density plasmas and (ii) multibillion-dollar, low-temperature, non-equilibrium and thermal industrial plasmas used in processing, synthesis and electronics.

Rajdeep Singh Rawat received his PhD in Physics from the University of Delhi. He is currently an associate professor of Physics and Deputy Head (Research and Postgraduate Matters) at NSSE/NIE, Nanyang Technological University (NTU), Singapore. He is also the President of Asian African Association for Plasma Training (AAAPT). He is an experimental plasma physicist with expertise in dense plasma focus (DPF), pulsed laser deposition (PLD) and plasma enhanced chemical vapor deposition (PECVD) facilities for fundamental studies on plasma dynamics and radiation/particle emission as well as for wide ranges of applications. He has also worked extensively on a wide variety of applications of these devices, such as high repetition rate portable neutron source, radioisotopes synthesis, soft x-ray lithography, soft and hard x-ray imaging, and pioneered the field of material modification and nano-structured material synthesis using plasma focus devices. He leads the plasma radiation sources lab group at the NTU, secured 28 local/international/industrial research grants, and published over 190 journal papers.

Contents 5
1 Asian African Association for Plasma Training (AAAPT)—History, Network, Activities, and Impact 7
1.1 Introduction to Asian African Association for Plasma Training (AAAPT) 7
1.2 Missions, Goals, and Impact of AAAPT 8
1.3 Events Leading to the Formation of AAAPT 10
1.4 Overview of AAAPT Activities 14
1.4.1 Group Training Programmes and Colleges Organized and Supported by AAAPT 14
1.4.2 Activities at AAAPT Training Centres [1991–2003] 17
1.4.3 AAAPT Network Activities 2005 Onwards 20
1.4.4 Facilities Transferred or Developed After Training Programmes or Collaborative Visits Under AAAPT Network Activities 23
1.4.5 Numerical Simulation Workshops 23
1.4.6 Symposia, Workshops, and Conferences Organized or Co-organized by AAPPT 27
1.5 Summarizing Success of AAAPT 33
Acknowledgements 37
References 37
2 Dense Plasma Focus—High-Energy-Density Pulsed Plasma Device Based Novel Facility for Controlled Material Processing and Synthesis 44
2.1 Introduction 44
2.2 Material Synthesis and Processing 46
2.3 Plasmas for Material Synthesis and Processing 51
2.3.1 Low-Temperature Plasmas (LTPs) for Material Synthesis and Processing 53
2.3.2 High-Temperature Plasmas for Material Synthesis and Processing 56
2.4 Dense Plasma Focus (DPF) Device: Introduction, Principle, and Characteristics 59
2.4.1 DPF Device Details 60
2.4.2 Principle of Operation: Plasma Dynamics in DPF Device 65
2.4.3 Key Characteristics of DPF Device 68
2.4.4 Plasma Lifetime in DPF Device and Some Features of Post Pinch Phase 70
2.5 Material Processing and Synthesis Using DPF Device—Timeline of Milestones 74
2.6 Material Processing Using DPF Device 79
2.6.1 Mechanism and Physical Processes for Material Processing in DPF Device 81
2.6.2 Selective Examples of Material Processing 87
2.6.2.1 Processing of Bulk Substrate Surface 87
2.6.2.2 Processing of Thin/Thick Films 91
2.7 Material Synthesis/Deposition Using DPF Device 95
2.7.1 Advantages of DPF-Based Depositions 95
2.7.1.1 High Deposition Rates 96
2.7.1.2 Ability to Grow Crystalline Thin Films at Room Temperature 98
2.7.1.3 Superior Physical Properties 100
2.7.1.4 Versatile Deposition Facility with a Variety of Deposition Options 102
2.7.2 Understanding Mechanisms of Material Synthesis in DPF Device 103
2.8 Scalability of DPF Devices for Material Processing and Synthesis 105
2.9 Conclusions 107
References 108
3 The Plasma Focus—Numerical Experiments, Insights and Applications 118
3.1 Introduction 118
3.1.1 Introduction to the Plasma Focus—Description of the Plasma Focus. How It Works, Dimensions and Lifetimes of the Focus Pinch 118
3.1.2 Review of Models and Simulation 122
3.1.3 A Universal Code for Numerical Experiments of the Mather-Type Plasma Focus 128
3.2 Lee Model Code 129
3.2.1 The Physics Foundation and Wide-Ranging Applications of the Code 129
3.2.2 The Five Phases of the Plasma Focus 131
3.2.3 The Equations of the Five Phases 134
3.2.3.1 Axial Phase (Snowplow Model) 134
Equation of Motion 134
Circuit (Current) Equation 134
Normalizing the Generating Equations to Obtain Characteristic Axial Transit Time, Characteristic Axial Speed and Speed Factor S and Scaling Parameters of Times, ? and Inductances ?
Calculate Voltage Across Input Terminals of Focus Tube 137
Integration Scheme for Normalized Generating Equations 137
3.2.3.2 Radial Inward Shock Phase (Slug Model) 137
Motion of Shock Front 138
Elongation Speed of CS (Open-Ended at Both Ends) 139
Radial Piston Motion 139
Circuit Equation During Radial Phase 141
Normalizing the Generating Equations to Obtain Characteristic Radial Transit Time, Characteristic Radial Transit Speed and Speed Factor S and Scaling Parameters for Times ?1 and Inductances ?1
Calculate Voltage V Across PF Input Terminals 143
Integrating for the Radial Inward Shock Phase 143
Correction for Finite Acoustic (Small Disturbance) Speed 144
3.2.3.3 Radial Reflected Shock (RS) Phase 145
Reflected Shock Speed 145
Piston Speed 145
Elongation Speed 145
Circuit Equation 145
Tube Voltage 145
3.2.3.4 Slow Compression (Pinch) Phase 146
Radiation-Coupled Dynamics (Piston) Equation 146
Joule Heating Component of dQ/dt 146
Radiation Components of dQ/dt 147
Plasma Self-absorption and Transition from Volumetric Emission to Surface Emission 147
Neutron Yield 148
Column Elongation 149
Circuit Current Equation 149
Voltage Across Plasma Focus Terminals 150
Pinch Phase Dynamics and Yields of Neutrons, Soft X-rays, Ion Beams and Fast Plasma Stream 150
3.2.3.5 Expanded Column Axial Phase 150
3.2.4 Procedure for Using the Code 151
3.2.5 Adding a 6th Phase: From Pinch (Slow Compression) Phase to Large Volume Plasma Phase-Transition Phase 4a 154
3.2.5.1 The 5-Phase Model Is Adequate for Low Inductance L0 Plasma Focus Devices 154
3.2.5.2 Factors Distinguishing the Two Types of Plasma Focus Devices 156
3.2.5.3 Procedure for Using 6-Phase Code—Control Panel for Adding Anomalous Phases 158
3.2.6 Conclusion for Description of the Lee Model Code 159
3.3 Scaling Properties of the Plasma Focus Arising from the Numerical Experiments 160
3.3.1 Various Plasma Focus Devices 160
3.3.2 Scaling Properties (Mainly Axial Phase) 160
3.3.3 Scaling Properties (Mainly Radial Phase) 163
3.3.4 Scaling Properties: Rules of Thumb 164
3.3.5 Designing an Efficient Plasma Focus: Rules of Thumb [10] 165
3.3.6 Tapered Anode, Curved Electrodes, Current-Stepped PF, Theta Pinch 166
3.3.6.1 Tapered Anode 166
3.3.6.2 Curved Electrodes 167
Bora Plasma Focus 167
Spherical Plasma Focus, KU200 168
A Note on the 2-D Model of Abdul Al-Halim et al. 170
3.3.6.3 Current-Stepped Plasma Focus 170
3.3.6.4 Procedure to Use Lee Code for the Above Devices 171
3.3.6.5 Theta Pinch Version of the Code 171
3.4 Insights and Scaling Laws of the Plasma Focus Arising from the Numerical Experiments 172
3.4.1 Using the Lee Model Code as Reference for Diagnostics 172
3.4.1.1 Comments on Computed Quantities by Lee Model Code 172
3.4.1.2 Correlating Computed Plasma Dynamics with Measured Plasma Properties—A Very Powerful Diagnostic Technique 175
3.4.2 Insight 1—Pinch Current Limitation Effect as Static Inductance Is Reduced Towards Zero 176
3.4.3 Neutron Yield Limitations Due to Current Limitations as L0 Is Reduced 178
3.4.4 Insight 2—Scaling Laws for Neutron—Scaling Laws for Neutrons from Numerical Experiments Over a Range of Energies from 10 kJ to 25 MJ 180
3.4.5 Insight 3—Scaling Laws for Soft X-ray Yield 182
3.4.5.1 Computation of Neon SXR Yield 182
3.4.5.2 Scaling Laws for Neon SXR Over a Range of Energies from 0.2 kJ to 1 MJ 183
3.4.6 Insight 4—Scaling Laws for Fast Ion Beams and Fast Plasma Streams from Numerical Experiments 187
3.4.6.1 Computation of Beam Ion Properties 187
3.4.6.2 The Ion Beam Flux and Fluence Equations 187
3.4.6.3 Consequential Properties of the Ion Beam [59] 189
3.4.6.4 Fast Ion Beam and Fast Plasma Stream Properties of a Range of Plasma Focus Devices—Investigations of Damage to Plasma Facing Wall Materials in Fusion Reactors 190
3.4.6.5 Slow Focus Mode SFM Versus Fast Focus Mode FFM-Advantage of SFM for Fast Plasma Stream Nano-materials Fabrication: Selection of Energy of Bombarding Particles by Pressure Control [63] 193
3.4.6.6 The Dual PF (DuPF)—Optimizing FFM and SFM in One Machine [61] 196
3.4.7 Insight 5—Neutron Saturation 198
3.4.7.1 The Global Neutron Scaling Law 200
3.4.7.2 The Dynamic Resistance 201
3.4.7.3 The Interaction of a Constant Dynamic Resistance with a Reducing Generator Impedance Causes Deterioration in Current Scaling 202
3.4.7.4 Deterioration in Current Scaling Causes Deterioration in Neutron Scaling 203
3.4.7.5 Beyond Presently Observed Neutron Saturation Regimes 204
3.4.7.6 Neutron Scaling—Its Relationship with the Plasma Focus Properties 205
3.4.7.7 Relationship with Plasma Focus Scaling Properties 205
3.4.8 Summary of Scaling Laws 206
3.5 Radiative Cooling and Collapse in Plasma Focus 207
3.5.1 Introduction to Radiative Cooling 207
3.5.2 The Radiation-Coupled Dynamics for the Magnetic Piston 209
3.5.3 The Reduced Pease-Braginskii Current 209
3.5.3.1 The Reduced Pease-Braginskii Current for PF1000 at 350 kJ 210
3.5.3.2 The Reduced Pease-Braginskii Current for INTI PF at 2 kJ 211
3.5.4 Effect of Plasma Self-absorption 211
3.5.5 Characteristic Times of Radiation 212
3.5.5.1 Definition-Pinch Energy/Radiation Power 213
3.5.5.2 Characteristic Depletion Time for Bremsstrahlung 213
3.5.5.3 Characteristic Depletion Time for Line Radiation 214
3.5.5.4 Characteristic Depletion Time tQ for PF1000 214
3.5.5.5 Characteristic Depletion Time tQ for INTI PF 215
3.5.6 Numerical Experiments on PF1000 and INTI PF 216
3.5.6.1 Fitting for Model Parameters in PF1000 216
3.5.6.2 PF 1000 in Deuterium and Helium—Pinch Dynamics Showing no Sign of Radiative Cooling or Collapse 216
3.5.6.3 PF 1000 in Neon 23 kV, 1 Torr—Pinch Dynamics Showing Signs of Radiative Cooling and Enhanced Compression 218
3.5.6.4 PF1000 in Argon, Krypton and Xenon—Pinch Dynamics Showing Strong Radiative Collapse 219
3.5.6.5 PF 1000 in Various Gases—Summary of Radiative Pinch Dynamics 221
3.5.6.6 Comparison of rmin from Experiments and Simulation in PF1000 221
3.5.6.7 Six Regimes of the PF Pinch Characterized by Relative Dominance of Joule Heating Power, Radiative Power and Dynamic Power Terms 221
3.5.6.8 Experiments of INTIPF Showing Radiative Collapse and High-Energy Density (HED) 223
3.5.7 Conclusion for Section on Radiative Collapse 226
3.6 Conclusion 226
Acknowledgements 228
References 228
4 X-ray Diagnostics of Pulsed Plasmas Using Filtered Detectors 238
4.1 Introduction 238
4.1.1 X-ray Sources—Traditional and Plasma 239
4.1.2 X-ray Detectors—Spectral, Spatial and Temporal Resolution 241
4.1.3 X-ray Production Mechanisms 244
4.1.4 Filter and Detector Absorption Mechanisms 246
4.2 Experimental Setup 250
4.2.1 Determination of Detector Active Layer 255
4.2.2 Detector—Choice of Filters 255
4.2.3 Construction of Detector Housing 260
4.2.4 Debris Mitigation 261
4.3 Analysis Method 263
4.3.1 Rose Filter Method 263
4.3.2 Calculation of Expected Detector Signals Based on Known Spectra 266
4.3.3 The Inverse Problem: Calculating the Spectra from Detector Signals 268
4.3.4 Error Analysis 270
4.4 Summary and Conclusion 271
References 272
5 Pulsed Plasma Sources for X-ray Microscopy and Lithography Applications 274
5.1 Introduction 274
5.1.1 Pinch Plasma X-ray Sources 275
5.1.2 X-ray Production and Evaluation Mechanisms 277
5.1.3 Numerical Simulation—Tools for Radiation Source Optimization 278
5.2 Pinch Plasma Sources for X-ray Microscopy 280
5.2.1 Soft X-ray Radiography 281
5.2.2 Hard X-ray Radiography 281
5.2.3 X-ray Microscopy of Living Biological Specimen 287
5.3 Plasma Focus as X-ray Source for Lithography 288
5.3.1 Repetitive Mode of Operation 291
5.3.2 Miniature Plasma Focus as a Lithography Source 292
5.3.3 MHD Simulation—Tools for Radiation Source Optimization 294
5.4 Summary and Conclusion 296
References 296
6 Neutron and Proton Diagnostics for Pulsed Plasma Fusion Devices 298
6.1 Introduction 298
6.1.1 Fusion Reactions in Plasmas 299
6.1.2 Reaction Cross Sections and Kinematics 300
6.1.3 Overview of Neutron and Proton Detectors 304
6.2 Neutron Diagnostics 304
6.2.1 Thermal Neutron Detectors 305
6.2.2 Fast Neutron Detectors 307
6.2.3 Fluence Anisotropy Measurements 311
6.2.4 Neutron Energy Measurements 312
6.2.5 Monte Carlo Simulation for Neutron Detector 316
6.3 Proton Diagnostics 327
6.3.1 Polymer Nuclear Track Detectors 328
6.3.2 Proton Stopping-Power and Range 329
6.3.3 Proton Energy Spectroscopy Based on Range 330
6.3.4 Proton Imaging of the Fusion Source 334
6.3.5 Coded Aperture Imaging 335
6.3.6 Proton Gyration in Magnetic Field 348
6.3.7 Some Experiments and Results 350
6.4 Conclusion 355
Acknowledgements 356
References 356
7 Plasma Focus Device: A Novel Facility for Hard Coatings 359
7.1 Introduction 359
7.2 Studies of Ions Emitted from Plasma Focus 365
7.3 Deposition of Nitride and Carbide Coatings 371
7.3.1 Growth of TiAlN Coatings 373
7.3.1.1 Phase Identification 373
7.3.1.2 Micro-hardness 377
7.3.2 Synthesis of Zirconium Nitride Films 378
7.3.2.1 Microstructural Analysis 379
7.3.2.2 Micro-hardness Analysis 383
7.3.3 Deposition of ZrON Composite Films 384
7.3.3.1 Structural Analysis 385
7.3.3.2 Morphological Analysis 387
7.3.3.3 Mechanical Property Analysis 388
7.3.4 Growth of Nanocrystalline ZrAlO 389
7.3.4.1 XRD Analysis 389
7.3.4.2 SEM Analysis 392
7.3.4.3 Micro-Hardness Analysis 394
7.3.5 Mechanical Properties of Nanocomposite Al/a-C 396
7.3.5.1 XRD Analysis 396
7.3.5.2 XPS Analysis 398
7.3.5.3 Raman Analysis 398
7.3.5.4 Surface Morphology 399
7.3.5.5 Mechanical Properties 401
7.3.6 Hard TiCx/SiC/a-C:H Nanocomposite Thin Films 401
7.3.6.1 XRD Results 402
7.3.6.2 SEM Results 403
7.3.6.3 Hardness Measurements 406
7.4 Conclusions 407
References 410
8 Research on IR-T1 Tokamak 417
8.1 Introduction 417
8.2 Thermonuclear Fusion 418
8.2.1 Confinement Fusion 419
8.3 Tokamak 420
8.4 IR-T1 Tokamak 421
8.4.1 Biasing Systems in IR-T1 Tokamak 422
8.4.2 Resonant Helical Magnetic Field in IR-T1 Tokamak 423
8.5 Plasma Diagnostics in IR-T1 Tokamak 424
8.5.1 Magnetic Diagnostics 424
8.5.1.1 Rogowski Coil 424
8.5.1.2 Loop Voltage 425
8.5.1.3 Mirnov Coils 426
Control of MHD Activity by Limiter Biasing System in IR-T1 Tokamak 426
Study of Magnetic Islands Width in IR-T1 Tokamak 433
8.5.1.4 Magnetic Probes 438
Determination of the Toroidal Field Ripple and Shafranov Parameter by Discrete Magnetic Probes 443
Measurements of the Poloidal Beta and Internal Inductance with the Diamagnetic Loop 445
The Effect of Cold Limiter Biased System on the Plasma Internal Inductance in IR-T1 Tokamak 447
8.5.2 Electrical Probes 450
8.5.2.1 Principles of Langmuir Probe Operation 454
8.5.2.2 Single Langmuir Probe 454
The Control of Turbulent Transport in IR-T1 Tokamak by External Resonant Fields 455
8.5.2.3 Ball-Pen Probe 461
Study of Electron Temperature by the Langmuir Ball-Pen Probe 464
8.5.2.4 Emissive Probe 467
8.5.2.5 Mach Probe 469
The Influence of the Biased Electrode System on the Rotation Velocity of Plasma 470
The Study of Plasma Flow Rotation in the Presence of a Resonant Helical Magnetic Field 473
8.6 Conclusion 475
Acknowledgements 476
References 476
9 Cost-Effective Plasma Experiments for Developing Countries 479
9.1 Introduction 479
9.2 Plasma Devices and Their Applications 480
9.2.1 50 Hz AC Glow Discharge 480
9.2.1.1 Application of 50 Hz Plasma System for Graft Polymerization of Polyimide Film to Improve Adhesion of Copper by Electroless Plating 484
9.2.1.2 Application of a 50 Hz AC Glow Discharge for Surface Modification of Biomedical Materials 484
9.2.2 Dielectric Barrier Discharge (DBD) 489
9.2.2.1 Parallel-Plate DBD System 490
9.2.2.2 Tubular DBD System with Coaxial Electrodes 491
9.2.2.3 Applications of Parallel-Plate Atmospheric Pressure DBD for Polymer Surface Treatment 492
9.2.2.4 Applications of the Tubular DBD as a Chemical Reactor 493
9.2.3 Nonequilibrium Atmospheric Pressure Plasma Jets 493
9.2.3.1 Conditions to Operate Nonequilibrium Discharges at Atmospheric Pressure 494
9.2.3.2 Some Configurations of Nonequilibrium Plasma Jets 496
9.2.3.3 Characteristics of Nonequilibrium APPJs 497
9.2.3.4 Applications of Nonequilibrium Plasma Jets 504
Inactivation of Bacteria 504
Treatment on Malignant Cells 506
Surface Modification 507
Synthesis of Nanoparticles 507
9.2.4 Vacuum Spark and Flash X-Ray Tube 510
9.2.4.1 Introduction 510
9.2.4.2 An Example of a Low-Cost Vacuum Spark System 512
9.2.4.3 The Flash X-Ray Tube (UMFX) 514
9.2.4.4 Applications of the UMFX Pulsed X-Ray Source 515
9.2.5 Synthesis of Nanoparticles by the Wire Explosion Technique 517
9.2.5.1 Introduction 517
9.2.5.2 The Wire Explosion System at University of Malaya [180] 518
9.2.5.3 Syntheses of Nanopowder by Wire Explosion 519
9.3 Conclusion 521
Acknowledgements 521
References 521
10 Radio Frequency Planar Inductively Coupled Plasma: Fundamentals and Applications 530
10.1 Introduction 530
10.1.1 Introduction to Inductively Coupled Plasmas (ICPs) 530
10.1.2 Brief Historical Development of the Inductive Discharge 531
10.2 Fundamentals 533
10.2.1 Configurations of the Inductive Source 533
10.2.2 Impedance Matching 535
10.2.3 Modes of Operation and Hysteresis 538
10.2.3.1 E Mode and H Mode 538
10.2.3.2 Mode Transitions and Hysteresis 538
10.2.4 Power Balance in RF Planar ICPs 539
10.2.4.1 Power Balance Model 540
10.2.4.2 Total Absorbed Electron Power, Pabs 541
10.2.4.3 Electron Power Loss, Ploss 543
10.2.4.4 Mode Transition Dynamics and Hysteresis in an ICP Discharge 546
10.2.5 Electromagnetic Field Distributions in RF Planar ICPs 548
10.2.5.1 Electromagnetic Field Equations 549
10.2.5.2 H Mode Field Equations 552
Separation of Variables Method for the H Mode Field Model 553
Solving the Boundary Constants for H Mode Field Model 557
10.2.5.3 E Mode Field Equations 560
Separation of Variables Method for the E Mode Field Model 562
Solving the Boundary Constants for E Mode Field Model 564
10.2.5.4 Calculation of Electron Collision Frequency, ? 567
10.2.5.5 Electromagnetic Field Characteristics in RF Planar ICPs 568
10.2.6 Neutral Gas Heating in RF Planar ICPs 572
10.2.6.1 The Effects of Neutral Gas Heating on ICP Characteristics 573
10.2.6.2 Measurement of ICP Neutral Gas Temperature with AOES 576
Estimation of Neutral Gas Temperature of an Argon ICP Using the Nitrogen Second Positive System (N2C3?u ? B3?g) 577
10.3 Applications of ICPs 582
10.3.1 Inductive Lamp 582
10.3.2 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 584
10.3.3 Plasma-Enhanced Chemical Vapor Deposition (ICP-PECVD) 585
10.3.4 Reactive Ion Etching (RIE) 587
10.4 Chapter Summary 589
References 589
11 Plasma Polymerization: Electronics and Biomedical Application 595
11.1 Introduction 595
11.2 Generation of Plasma 597
11.2.1 Mechanisms of Plasma Polymerization 598
11.2.2 Types of Glow Discharge 600
11.2.3 Plasma Polymerization Apparatus 604
11.2.4 Effect of Process Variables on Polymerization 605
11.2.5 Feed Gases Used in Plasma Polymerization 611
11.2.6 Plasma Polymerization Process: Challenges and Issues 613
11.3 Properties of Plasma Polymers 614
11.3.1 Optical Properties 615
11.3.2 Electrical Properties 618
11.3.3 Chemical and Structural Properties 620
11.3.4 Surface Properties 623
11.4 Plasma Polymer Thin Films for Electronic Applications 624
11.4.1 Various Roles of Plasma-Deposited Thin Films in Thin Film Transistor (TFT) Technology 625
11.4.1.1 Plasma Polymer Thin Films as Gate Dielectric Material 626
11.4.1.2 Hybrid Gate Dielectric Thin Films 628
11.4.1.3 Plasma Polymer Buffer Layers for Conventional Inorganic Dielectric Films 629
11.4.2 Plasma Polymers for Organic Light Emitting Diodes (OLEDs) Applications 631
11.4.3 Plasma Deposited Films for Device Encapsulation 633
11.5 Plasma Polymer Thin Films for Biomedical Applications 635
11.5.1 Drug Encapsulation and Controlled Release 637
11.5.2 Antibacterial Coatings 639
11.5.2.1 Antibacterial Coatings—Surface Functionalization 640
11.5.2.2 Antibacterial Coatings—Surface Nanostructuring 642
11.5.2.3 Antibacterial Coatings—Nanoparticle Incorporation 644
11.5.3 Protective Coating 645
11.5.4 Biosensing 646
11.6 Conclusion 646
References 647
12 Cold Atmospheric Plasma Sources—An Upcoming Innovation in Plasma Medicine 660
12.1 Introduction 660
12.2 CAP: Principles and Design 664
12.3 Characteristics of the Hybrid CAP® 671
12.3.1 CAP Power Determination and Skin Contact Temperature 671
12.3.2 Radicals and UV Determination 673
12.4 The Hybrid CAP® Case Studies 679
12.4.1 Disinfection Measure 679
12.4.2 Infected Wound 685
Acknowledgements 689
References 689
13 Dielectric Barrier Discharge (DBD) Plasmas and Their Applications 693
13.1 Introduction 693
13.2 Various Types of Plasmas Useful in Industry 695
13.2.1 Low-Pressure Plasmas 695
13.2.1.1 DC Discharge 695
13.2.1.2 RF Discharge 697
13.2.1.3 Microwave Discharge 698
13.2.2 Atmospheric Pressure Plasma 699
13.2.2.1 Corona Discharge 699
13.2.2.2 Arc Discharge 701
13.2.2.3 Dielectric Barrier Discharge (DBD) 702
13.2.2.4 Surface Barrier Discharge (SBD) 703
13.2.2.5 Atmospheric Pressure Glow Discharge (APGD) 703
13.3 Generation and Characterization of DBD 705
13.3.1 Introduction 705
13.3.2 Principle and Operation of DBD 705
13.3.3 Generation of DBD Plasma in Different Configurations 707
13.3.3.1 Parallel-Plate Electrode System 708
13.3.3.2 Cylindrical Electrode System 708
13.3.3.3 Coaxial Electrode System 709
13.3.3.4 Atmospheric Pressure Plasma Jet (APPJ) 710
13.3.4 Characterization of DBD 712
13.3.4.1 Electrical Characterization 713
13.3.4.2 Optical Characterization 714
13.4 Application of DBD 718
13.4.1 Ozone Generation 719
13.4.2 Material Processing—Polymer Surface Modification 721
13.4.3 Plasma Medicine 730
13.5 Summary 732
Acknowledgements 733
References 733
14 Carbon-Based Nanomaterials Using Low-Temperature Plasmas for Energy Storage Application 738
14.1 Introduction 738
14.2 Lithium-Ion Battery 742
14.2.1 Primary Versus Secondary Batteries 742
14.2.2 Rechargeable Battery Chemistries 743
14.2.3 Conventional LIB 746
14.2.4 Electrode Materials for LIBs 748
14.2.4.1 Insertion Electrodes 749
Alloying 751
Conversion 752
14.3 Supercapacitors (SCs) 753
14.3.1 Fundamentals of Supercapacitors (SCs) 754
14.3.2 Advantages and Challenges of SCs 757
14.3.2.1 Advantages of SCs 757
14.3.2.2 Challenges for SCs 758
14.3.3 Electrode Materials 759
14.3.3.1 Carbon Materials 760
14.3.3.2 Faradaic Materials 761
Conductive Polymers (CPs) 762
Metal Oxides/Hydroxides 762
14.4 Low-Temperature Plasma for Syntheses of Energy Materials 763
14.4.1 Plasma Production Using Electric Fields 764
14.4.2 Radio Frequency (RF) Discharge 764
14.4.2.1 Capacitively Coupled Plasma (CCP) Discharge 766
14.4.2.2 Inductively Coupled Plasma (ICP) Discharge 768
14.5 Low-Temperature Plasma-Based Carbon Materials for Energy Storage Performance 769
14.5.1 Advantages of Plasma-Assisted Strategies in Nano-Structural Preparation 770
14.5.2 Classifications of Plasma-Assisted Approaches for Nanostructure Fabrication 772
14.5.3 Nanostructures Fabricated by PECVD 773
14.5.3.1 Carbon Nanotubes (CNTs) 774
Electrically Guided Alignment of Carbon Nanotubes 774
Amorphous Carbon Removal and Related Plasma Chemistries 775
Energy Application of CNTs 779
CNTs for LIBs 779
CNTs for SCs 783
14.5.3.2 Vertically Oriented Graphene Nanosheets (VGNSs) 783
Plasma-Assisted Growth 785
VGNS Growth on Different Substrates 785
VGNS Growth Using Different Precursors 787
Growth Mechanisms of VGNSs 788
14.5.3.3 Energy Application of VGNSs 792
VGNSs for Supercapacitors (SCs) 792
VGNSs for LIBs 795
14.6 Conclusions and Outlook 798
References 799

Erscheint lt. Verlag 7.10.2017
Zusatzinfo VI, 805 p. 418 illus., 220 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Plasmaphysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Sozialwissenschaften Pädagogik
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Asian African Association for Plasma Training • Cold Atmospheric Plasma Sources • Cost Effective Plasma Experiments • Dense plasma focus • Dielectric Barrier Discharge • Hard Tribological Coatings • High Energy Density Pulsed Plasma Device • IR-T1 Tokamak • Plasma medicine • Plasma Polymerization • Plasma Science in Developing Countries • Pulsed Plasma Fusion Devices • X-ray diagnostics
ISBN-10 981-10-4217-9 / 9811042179
ISBN-13 978-981-10-4217-1 / 9789811042171
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 28,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich