Fundamentals of Predictive Text Mining - Sholom M. Weiss, Nitin Indurkhya, Tong Zhang

Fundamentals of Predictive Text Mining

Buch | Softcover
239 Seiten
2016 | Softcover reprint of the original 2nd ed. 2015
Springer London Ltd (Verlag)
978-1-4471-7113-3 (ISBN)
53,49 inkl. MwSt
This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Features: includes chapter summaries and exercises; explores the application of each method; provides several case studies; contains links to free text-mining software.

Dr. Sholom M. Weiss is a Professor Emeritus of Computer Science at Rutgers University, a Fellow of the Association for the Advancement of Artificial Intelligence, and co-founder of AI Data-Miner LLC, New York. Dr. Nitin Indurkhya is faculty member at the School of Computer Science and Engineering, University of New South Wales, Australia, and the Institute of Statistical Education, Arlington, VA, USA. He is also a co-founder of AI Data-Miner LLC, New York. Dr. Tong Zhang is a Professor of Statistics and Biostatistics at Rutgers University.

Overview of Text Mining.- From Textual Information to Numerical Vectors.- Using Text for Prediction.- Information Retrieval and Text Mining.- Finding Structure in a Document Collection.- Looking for Information in Documents.- Data Sources for Prediction: Databases, Hybrid Data and the Web.- Case Studies.- Emerging Directions.

Erscheinungsdatum
Reihe/Serie Texts in Computer Science
Zusatzinfo 115 Illustrations, black and white; XIII, 239 p. 115 illus.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Grafik / Design Desktop Publishing / Typographie
Sozialwissenschaften Politik / Verwaltung Staat / Verwaltung
Schlagworte Document Classification • information extraction • Information Retrieval • machine learning • Text Mining
ISBN-10 1-4471-7113-6 / 1447171136
ISBN-13 978-1-4471-7113-3 / 9781447171133
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90