Big Data Analytics with Spark - Mohammed Guller

Big Data Analytics with Spark

A Practitioner's Guide to Using Spark for Large Scale Data Analysis

(Autor)

Buch | Softcover
277 Seiten
2015 | 1st ed.
Apress (Verlag)
978-1-4842-0965-3 (ISBN)
53,49 inkl. MwSt
Big Data Analytics with Spark is a step-by-step guide for learning Spark, which is an open-source fast and general-purpose cluster computing framework for large-scale data analysis. You will learn how to use Spark for different types of big data analytics projects, including batch, interactive, graph, and stream data analysis as well as machine learning. In addition, this book will help you become a much sought-after Spark expert.

Spark is one of the hottest Big Data technologies. The amount of data generated today by devices, applications and users is exploding. Therefore, there is a critical need for tools that can analyze large-scale data and unlock value from it. Spark is a powerful technology that meets that need. You can, for example, use Spark to perform low latency computations through the use of efficient caching and iterative algorithms; leverage the features of its shell for easy and interactive Data analysis; employ its fast batch processing and low latency features to process your real time data streams and so on. As a result, adoption of Spark is rapidly growing and is replacing Hadoop MapReduce as the technology of choice for big data analytics.

This book provides an introduction to Spark and related big-data technologies. It covers Spark core and its add-on libraries, including Spark SQL, Spark Streaming, GraphX, and MLlib. Big Data Analytics with Spark is therefore written for busy professionals who prefer learning a new technology from a consolidated source instead of spending countless hours on the Internet trying to pick bits and pieces from different sources.

The book also provides a chapter on Scala, the hottest functional programming language, and the program that underlies Spark. You’ll learn the basics of functional programming in Scala, so that you can write Spark applications in it.

What's more, Big Data Analytics with Spark provides an introduction to other big data technologies thatare commonly used along with Spark, like Hive, Avro, Kafka and so on. So the book is self-sufficient; all the technologies that you need to know to use Spark are covered. The only thing that you are expected to know is programming in any language.



There is a critical shortage of people with big data expertise, so companies are willing to pay top dollar for people with skills in areas like Spark and Scala. So reading this book and absorbing its principles will provide a boost—possibly a big boost—to your career.

Mohammed Guller is the principal architect at Glassbeam, where he leads the development of advanced and predictive analytics products. He is a big data and Spark expert. He is frequently invited to speak at big data–related conferences. He is passionate about building new products, big data analytics, and machine learning. Over the last 20 years, Mohammed has successfully led the development of several innovative technology products from concept to release. Prior to joining Glassbeam, he was the founder of TrustRecs.com, which he started after working at IBM for five years. Before IBM, he worked in a number of hi-tech start-ups, leading new product development. Mohammed has a master's of business administration from the University of California, Berkeley, and a master's of computer applications from RCC, Gujarat University, India.

Chapter 1: Big Data Technology Landscape.- Chapter 2: Programming in Scala.- Chapter 3: Spark Core.- Chapter 4: Interactive Data Analysis with Spark Shell.- Chapter 5: Writing a Spark Application.- Chapter 6: Spark Streaming.- Chapter 7: Spark SQL.- Chapter 8: Machine Learning with Spark.- Chapter 9: Graph Processing with Spark.- Chapter 10: Cluster Managers.- Chapter 11: Monitoring.

Zusatzinfo 64 Illustrations, black and white; XXIII, 277 p. 64 illus.
Verlagsort Berkley
Sprache englisch
Maße 178 x 254 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Netzwerke
Sozialwissenschaften Politik / Verwaltung Staat / Verwaltung
ISBN-10 1-4842-0965-6 / 1484209656
ISBN-13 978-1-4842-0965-3 / 9781484209653
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90