Best known as the 'Father of Data Warehousing,' Bill Inmon has become the most prolific and well-known author worldwide in the big data analysis, data warehousing and business intelligence arena. In addition to authoring more than 50 books and 650 articles, Bill has been a monthly columnist with the Business Intelligence Network, EIM Institute and Data Management Review. In 2007, Bill was named by Computerworld as one of the 'Ten IT People Who Mattered in the Last 40 Years of the computer profession. Having 35 years of experience in database technology and data warehouse design, he is known globally for his seminars on developing data warehouses and information architectures. Bill has been a keynote speaker in demand for numerous computing associations, industry conferences and trade shows. Bill Inmon also has an extensive entrepreneurial background: He founded Pine Cone Systems, later named Ambeo in 1995, and founded, and took public, Prism Solutions in 1991. Bill consults with a large number of Fortune 1000 clients, and leading IT executives on Data Warehousing, Business Intelligence, and Database Management, offering data warehouse design and database management services, as well as producing methodologies and technologies that advance the enterprise architectures of large and small organizations world-wide. He has worked for American Management Systems and Coopers & Lybrand. Bill received his Bachelor of Science degree in Mathematics from Yale University, and his Master of Science degree in Computer Science from New Mexico State University."
Today, the world is trying to create and educate data scientists because of the phenomenon of Big Data. And everyone is looking deeply into this technology. But no one is looking at the larger architectural picture of how Big Data needs to fit within the existing systems (data warehousing systems). Taking a look at the larger picture into which Big Data fits gives the data scientist the necessary context for how pieces of the puzzle should fit together. Most references on Big Data look at only one tiny part of a much larger whole. Until data gathered can be put into an existing framework or architecture it can't be used to its full potential. Data Architecture a Primer for the Data Scientist addresses the larger architectural picture of how Big Data fits with the existing information infrastructure, an essential topic for the data scientist. Drawing upon years of practical experience and using numerous examples and an easy to understand framework. W.H. Inmon, and Daniel Linstedt define the importance of data architecture and how it can be used effectively to harness big data within existing systems. You'll be able to:- Turn textual information into a form that can be analyzed by standard tools. - Make the connection between analytics and Big Data- Understand how Big Data fits within an existing systems environment- Conduct analytics on repetitive and non-repetitive data- Discusses the value in Big Data that is often overlooked, non-repetitive data, and why there is significant business value in using it- Shows how to turn textual information into a form that can be analyzed by standard tools- Explains how Big Data fits within an existing systems environment- Presents new opportunities that are afforded by the advent of Big Data- Demystifies the murky waters of repetitive and non-repetitive data in Big Data
Front Cover 1
The Shanidar Neandertals 4
Copyright Page 5
Table of Contents 8
Dedication 6
Figures 12
Tables 16
Preface 20
Acknowledgments 22
CHAPTER
28
CHAPTER
31
The Site of Shanidar Cave 31
History of Excavations 41
The Neandertal Partial Skeletons 43
CHAPTER
58
CHAPTER
63
Age 63
Sex 70
Summary 80
CHAPTER
81
Shanidar 1 81
Shanidar 2 117
Shanidar 4 135
Shanidar 5 150
Shanidar 6 170
Shanidar 8 171
Artificial Deformation of the Shanidar 1 and 5 Crania 172
Summary of the Shanidar Skull Morphology 174
CHAPTER
178
Shanidar 1 178
Shanidar 2 182
Shanidar 3 186
Shanidar 4 187
Shanidar 5 187
Shanidar 6 191
Anterior Dental Remains 192
Posterior Dental Remains 198
Taurodontism 202
Summary 204
CHAPTER
205
Cervical Vertebrae 205
Thoracic Vertebrae 214
Lumbar Vertebrae 216
Sacrum 225
Coccygeal Vertebra 232
Ribs 233
Sternum 235
Summary 237
CHAPTER
238
Clavicles 238
Scapulae 242
Humeri 250
Ulnae 259
Radii 266
Hand Remains 275
Summary 309
CHAPTER
311
Innominate Bones 311
Femora 322
Patellae 331
Tibiae 337
Fibulae 347
Foot Remains 352
Summary 395
Chapter 10. The Immature Remains 396
Cranial Remains 397
Dentition 399
Axial Skeleton 408
Upper Limb Remains 409
Lower Limb Remains 414
Summary 416
CHAPTER
417
Bodily Proportions 417
Estimation of Stature 422
CHAPTER
426
Shanidar 1 428
Shanidar 2 440
Shanidar 3 441
Shanidar 4 445
Shanidar 5 446
Shanidar 6 448
Shanidar 8 448
Summary 449
CHAPTER
451
The Shanidar Sample 451
The Shanidar Fossils as Neandertals 453
Evolutionary Trends in the Shanidar Sample 463
The Shanidar
468
Behavioral Implications of the Shanidar Neandertals 482
Conclusion 487
CHAPTER
488
Historical Background 488
Phylogenetic Relationships 490
Neandertal Behavior 497
Conclusion 499
References 500
Index 526
Corporate Data
Abstract
Corporate data includes everything found in the corporation in the way of data. The most basic division of corporate data is by structured data and unstructured data. As a rule there is much more unstructured data than structured data. Unstructured data has two basic divisions – repetitive data and nonrepetitive data. Big Data is made up of unstructured data. Nonrepetitive Big Data has a fundamentally different form than repetitive unstructured Big Data. In fact the differences between nonrepetitive Big Data and repetitive Big Data are so large that they can be called the boundaries of the “great divide.” The divide is so large many professionals are not even aware that there is this divide. As a rule nonrepetitive Big Data has much greater business value than repetitive Big Data.
Keywords
The Totality of Data Across the Corporation
Dividing Unstructured Data
Business Relevancy
Big Data
The Great Divide
Erscheint lt. Verlag | 26.11.2014 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Office Programme ► Outlook | |
Mathematik / Informatik ► Informatik ► Software Entwicklung | |
Sozialwissenschaften ► Kommunikation / Medien ► Buchhandel / Bibliothekswesen | |
ISBN-10 | 0-12-802091-1 / 0128020911 |
ISBN-13 | 978-0-12-802091-3 / 9780128020913 |
Haben Sie eine Frage zum Produkt? |
Größe: 61,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 19,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich