Bayesian Inference in the Social Sciences (eBook)

eBook Download: EPUB
2014 | 1. Auflage
352 Seiten
Wiley (Verlag)
978-1-118-77112-9 (ISBN)

Lese- und Medienproben

Bayesian Inference in the Social Sciences -
Systemvoraussetzungen
113,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Presents new models, methods, and techniques and considers important real-world applications in political science, sociology, economics, marketing, and finance Emphasizing interdisciplinary coverage, Bayesian Inference in the Social Sciences builds upon the recent growth in Bayesian methodology and examines an array of topics in model formulation, estimation, and applications. The book presents recent and trending developments in a diverse, yet closely integrated, set of research topics within the social sciences and facilitates the transmission of new ideas and methodology across disciplines while maintaining manageability, coherence, and a clear focus. Bayesian Inference in the Social Sciences features innovative methodology and novel applications in addition to new theoretical developments and modeling approaches, including the formulation and analysis of models with partial observability, sample selection, and incomplete data. Additional areas of inquiry include a Bayesian derivation of empirical likelihood and method of moment estimators, and the analysis of treatment effect models with endogeneity. The book emphasizes practical implementation, reviews and extends estimation algorithms, and examines innovative applications in a multitude of fields. Time series techniques and algorithms are discussed for stochastic volatility, dynamic factor, and time-varying parameter models. Additional features include: Real-world applications and case studies that highlight asset pricing under fat-tailed distributions, price indifference modeling and market segmentation, analysis of dynamic networks, ethnic minorities and civil war, school choice effects, and business cycles and macroeconomic performance State-of-the-art computational tools and Markov chain Monte Carlo algorithms with related materials available via the book s supplemental website Interdisciplinary coverage from well-known international scholars and practitioners Bayesian Inference in the Social Sciences is an ideal reference for researchers in economics, political science, sociology, and business as well as an excellent resource for academic, government, and regulation agencies. The book is also useful for graduate-level courses in applied econometrics, statistics, mathematical modeling and simulation, numerical methods, computational analysis, and the social sciences.

IVAN JELIAZKOV, PhD, is Associate Professor of Economics and Statistics at the University of California, Irvine. Dr. Jeliazkov's research interests include Bayesian econometrics and discrete data analysis, model comparison, and simulation-based inference. In addition to developing new methods and estimation techniques, his work features applications in a variety of disciplines, including micro- and macroeconomics, marketing, political science, transportation, and environmental engineering. XIN-SHE YANG, PhD, is Reader in Modeling and Optimization at Middlesex University, United Kingdom, as well as Adjunct Professor at Reykjavik University, Iceland. He is the author of Mathematical Modeling with Multidisciplinary Applications and Engineering Optimization: An Introduction with Metaheuristic Applications, both of which are published by Wiley.

Erscheint lt. Verlag 4.11.2014
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften
Sozialwissenschaften Soziologie Empirische Sozialforschung
Technik
Schlagworte Ökonometrie • Bayesian analysis • Bayessches Verfahren • Bayes-Verfahren • Econometrics • Economics • Ökonometrie • Sozialwissenschaften • Statistics • Statistics for Social Sciences • Statistik • Statistik in den Sozialwissenschaften • Volkswirtschaftslehre
ISBN-10 1-118-77112-5 / 1118771125
ISBN-13 978-1-118-77112-9 / 9781118771129
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 6,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich