Natural Organic Matter in Water -  Mika Sillanpaa

Natural Organic Matter in Water (eBook)

Characterization and Treatment Methods
eBook Download: PDF | EPUB
2014 | 1. Auflage
382 Seiten
Elsevier Science (Verlag)
978-0-12-801719-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
155,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Approximately 77 percent of the freshwater used in the United States comes from surface-water sources and is subject to natural organic matter contamination according to the United States Geological Survey. This presents a distinct challenge to water treatment engineers. An essential resource to the latest breakthroughs in the characterization, treatment and removal of natural organic matter (NOM) from drinking water, Natural Organic Matter in Waters: Characterization and Treatment Methods focuses on advance filtration and treatment options, and processes for reducing disinfection byproducts. Based on the author's years of research and field experience, this book begins with the characterization of NOM including: general parameters, isolation and concentration, fractionation, composition and structural analysis and biological testing. This is followed by removal methods such as inorganic coagulants, polyelectrolytes and composite coagulants. Electrochemical and membranes removal methods such as: electrocoagulation, electrochemical oxidation, microfiltration and ultrafiltration, nanofiltration and membrane fouling. - Covers conventional as well as advanced NOM removal methods - Includes characterization methods of NOM - Explains removal methods such as: removal by coagulation, electrochemical, advanced oxidation, and integrated methods

Mika Sillanpää's research work centers on chemical treatment in environmental engineering and environmental monitoring and analysis. The recent research focus has been on the resource recovery from waste streams. Sillanpää received his M.Sc. (Eng.) and D.Sc. (Eng.) degrees from the Aalto University where he also completed an MBA degree in 2013. Since 2000, he has been a full professor/adjunct professor at the University of Oulu, the University of Eastern Finland, the LUT University, the University of Eastern Finland and the University of Johannesburg.
Approximately 77 percent of the freshwater used in the United States comes from surface-water sources and is subject to natural organic matter contamination according to the United States Geological Survey. This presents a distinct challenge to water treatment engineers. An essential resource to the latest breakthroughs in the characterization, treatment and removal of natural organic matter (NOM) from drinking water, Natural Organic Matter in Waters: Characterization and Treatment Methods focuses on advance filtration and treatment options, and processes for reducing disinfection byproducts. Based on the author's years of research and field experience, this book begins with the characterization of NOM including: general parameters, isolation and concentration, fractionation, composition and structural analysis and biological testing. This is followed by removal methods such as inorganic coagulants, polyelectrolytes and composite coagulants. Electrochemical and membranes removal methods such as: electrocoagulation, electrochemical oxidation, microfiltration and ultrafiltration, nanofiltration and membrane fouling. - Covers conventional as well as advanced NOM removal methods- Includes characterization methods of NOM- Explains removal methods such as: removal by coagulation, electrochemical, advanced oxidation, and integrated methods

Front Cover 1
NATURAL ORGANIC MATTER IN WATER: Characterization and Treatment Methods 4
Copyright 5
CONTENTS 6
CONTRIBUTORS 10
LIST OF ABBREVIATIONS 12
Chapter 1 - General Introduction 16
REFERENCES 27
Chapter 2 - Characterization of NOM 32
2.1 INTRODUCTION 33
2.2 GENERAL PARAMETERS 36
2.3 ISOLATION AND CONCENTRATION 38
2.4 FRACTIONATION 38
2.5 CHROMATOGRAPHIC METHODS 41
2.6 SPECTROSCOPIC METHODS 47
2.7 BIOLOGICAL TESTING 55
2.8 OTHER CHARACTERIZATION METHODS 56
2.9 CONCLUSIONS 57
REFERENCES 59
Chapter 3 - NOM Removal by Coagulation 70
3.1 INTRODUCTION 71
3.2 ALUMINUM-BASED COAGULANTS 76
3.3 FERRIC-BASED COAGULANTS 78
3.4 INORGANIC POLYMER FLOCCULANTS 78
3.5 ORGANIC POLYELECTROLYTES 81
3.6 COMPOSITE COAGULANTS 84
3.7 NOVEL COAGULANTS 86
3.8 CONCLUSIONS 88
REFERENCES 90
Chapter 4 - NOM Removal by Electrochemical Methods 96
4.1 INTRODUCTION 97
4.2 PRINCIPLES OF EC AND EO TECHNOLOGIES 98
4.3 EC AND EO TECHNOLOGIES IN NOM REMOVAL 107
4.4 CONCLUSIONS 118
REFERENCES 120
Chapter 5 - Membranes 128
5.1 INTRODUCTION 129
5.2 MICROFILTRATION 131
5.3 ULTRAFILTRATION 132
5.4 NANOFILTRATION 147
5.5 REVERSE OSMOSIS 158
5.6 MEMBRANE FOULING 160
5.7 CONCLUSIONS 164
REFERENCES 166
Chapter 6 - NOM Removal by Advanced Oxidation Processes 174
6.1 INTRODUCTION 175
6.2 AOPS IN NOM REMOVAL 177
6.3 UV LIGHT BASED APPLICATIONS 178
6.4 FENTON PROCESSES 185
6.5 HETEROGENEOUS PHOTOCATALYSIS AND CATALYTIC OXIDATION 195
6.6 ULTRASOUND IRRADIATION AND E-BEAM IRRADIATION 204
6.7 CONCLUSIONS 215
REFERENCES 218
Chapter 7 - NOM Removal by Adsorption 228
7.1 INTRODUCTION 229
7.2 ADSORPTION 229
7.3 ADSORBENTS AND THEIR CHARACTERISTICS 231
7.4 NOM REMOVAL FROM WATER BY ADSORPTION 233
7.5 CONCLUSIONS 248
REFERENCES 248
Chapter 8 - Ion Exchange 254
8.1 INTRODUCTION 255
8.2 REMOVAL OF NOM FROM WATER BY ION EXCHANGE 257
8.3 CONCLUSION 264
REFERENCES 285
Chapter 9 - Integrated Methods 290
9.1 INTRODUCTION 290
9.2 COUPLING COAGULATION WITH OTHER PROCESSES 290
9.3 COUPLING MEMBRANE TECHNOLOGY WITH OTHER PROCESSES 294
9.4 CONCLUSIONS 309
REFERENCES 309
BIBLIOGRAPHY 318
LIST OF JOURNAL TITLES WITH ABBREVIATIONS 366
INDEX 370

Chapter 2

Characterization of NOM


Mika Sillanpää, Anu Matilainen∗∗,  and Tanja Lahtinen     ∗Lappeenranta University of Technology, LUT Faculty of Technology, LUT Chemtech, Laboratory of Green Chemistry, Sammonkatu 12, 50130 Mikkeli, Finland     ∗∗Finnish Safety and Chemicals Agency, Kalevantie 2, 33100 Tampere, Finland     †University of Jyväskylä, Department of Chemistry, Organic Chemistry, Survontie 9 B, 40500 Jyväskylä, Finland

Abstract


Worldwide reports over the last few decades have shown that the amount of natural organic matter (NOM) in surface water is continuously increasing, which has an adverse effect on drinking water purification. For many practical and hygienic reasons, the presence of NOM in drinking water is undesirable. Various technologies have been proposed for NOM removal with varying degrees of success. The properties and amount of NOM, however, can significantly affect the process efficiency. To improve and optimize these processes, it is essential to characterize and quantify NOM at various points during purification and treatment. It is also important to be able to understand and predict the reactivity of NOM or its fractions at different stages of the process. Methods used in the characterization of NOM include resin adsorption, size exclusion chromatography, nuclear magnetic resonance (NMR) spectroscopy, and fluorescence spectroscopy. The NOM in water has been quantified with parameters including ultraviolet and visible, total organic carbon, and specific UV-absorbance. More precise methods for determining NOM structures have been developed recently: pyrolysis gas chromatography-mass spectrometry, multidimensional NMR techniques, and Fourier transform ion cyclotron resonance mass spectrometry. This chapter focuses on the methods used for the characterization and quantification of NOM in relation to drinking water treatment.

Keywords


Characterization; Chromatography; Concentration; Fractionation; Natural organic matter (NOM); Spectroscopy
Abbreviations
AFM
   Atomic force microscopy
AOC
   Assimilable organic carbon
AOPs
   Advanced oxidation processes
ATR
   Attenuated total reflectance
BDOC
   Biodegradable dissolved organic carbon
COD
   Chemical oxygen demand
DBP
   Disinfection by-product
DBPFP
   Disinfection by-product formation potential
DOC
   Dissolved organic carbon
EEM
   Excitation–emission matrix
ESI
   Electrospray ionization
FA
   Fulvic acids
FIFFF
   Flow field-flow fractionation
FTICR-MS
   Fourier transform ion cyclotron resonance mass spectrometry
FTIR
   Fourier transform infrared
GAC
   Granular activated carbon
GC
   Gas chromatography
HA
   Humic acids
HMW
   High molecular weight
HMBC
   Heteronuclear multiple bond correlation
HPLC
   High performance liquid chromatography
HPSEC
   High performance size exclusion chromatography
HR-MAS
   High resolution magic-angle spinning
ICP AES
   Inductively coupled plasma atomic emission spectroscopy
IR
   Infrared
LC-MS
   Liquid chromatography-mass spectrometry
LC-OCD
   Liquid chromatography-organic carbon detection
MM
   Molar mass
MWD
   Molecular weight distribution
NMR
   Nuclear magnetic resonance
NOM
   Natural organic matter
OCD
   Organic carbon detection
PARAFAC
   Parallel factor
PSS
   Polystyrene sulfonate
Py-GC-MS
   Pyrolysis gas chromatography-mass spectrometry
RO
   Reverse osmosis
RPHPLC
   Reversed-phase high-performance liquid chromatography
SEC
   Size exclusion chromatography
SEM
   Scanning electron microscopy
SHA
   Slightly hydrophobic acid
SUVA
   Specific UV-absorbance
TEM
   Transmission electron microscopy
THM
   Trihalomethane
TOC
   Total organic carbon
UV–Vis
   Ultraviolet and visible
VHA
   Very hydrophobic acid

2.1. Introduction


Natural organic matter (NOM) is a complex mixture of organic compounds. Some of this organic matter is negatively charged, and it can possess a wide variety of chemical compositions and molecular sizes (Thurman, 1985; Swietlik et al., 2004).
All disinfection methods (chlorine, ozone, chlorine dioxide, chloramines, and UV radiation) reportedly produce their own suite of disinfection by-products (DBPs) and bioreactive compounds in drinking water (Richardson et al., 2007). Present knowledge and experience show that the hydrophobic and high molecular weight (HMW) compounds of NOM are the most significant precursors to DBP formation (Hua and Reckhow, 2007; Chen et al., 2008). Hydrophilic matter may also play a key role in the formation of new compounds during disinfection, especially in waters with low humic components.
More efficient removal of NOM requires more knowledge of the organic matter present in raw water, and novel methods have been developed for the characterization of these organic compounds. At the same time, existing methods and techniques have been improved. These characterization methods are used to study the composition of NOM prior to treatment and during various stages of the treatment process (Chen et al., 2007; Sarathy and Mohseni, 2007; Her et al., 2008a; Liu et al., 2008; Tercero Espinoza et al., 2009; Zhao et al., 2009; Liu et al., 2010). The diversity of molecules that constitute NOM and the relatively low concentrations of NOM in water often make characterization difficult. There is, therefore, a significant need for methods that can either accurately characterize NOM in these dilute solutions or isolated or concentrated NOM.
The NOM in raw water must be characterized to understand its role in water treatment (Matilainen et al., 2011). Ideally, once the various NOM components and fractions of a raw water source have been determined, the treatment processes that will eliminate the most dominant NOM fractions could be selected. Yet, NOM contains literally thousands of chemical constituents. Thus, it is not realistic to characterize NOM on the basis of individual components, as discussed in the introduction, but it is more practical to identify groups of chemicals with similar properties (Croue et al., 2000).
An alternative approach to the characterization of NOM is to study how it reacts to DBP formation and the occurrence of different DBPs in drinking water (Culea et al., 2006; Kanokkantapong et al., 2006b; Chen et al., 2008; Cooper et al., 2008; Richardson et al., 2008; Blodau et al., 2009). The binding potential of NOM with inorganic and organic micropollutants may also be relevant to drinking water treatment (Gjessing et al., 2007; Laborda et al., 2009; Park, 2009).
Different unit processes remove different NOM fractions during water treatment (Haarhoff et al., 2010). Therefore, more sophisticated characterization techniques are required (Matilainen et al., 2011). Several complementary methods can provide definitive structural or functional information about NOM, and have been found to correlate well, allowing for comprehensive characterization (Jaouadi et al., 2012; Penru et al., 2013). These analytical methods also provide better information for process design and optimization than the conventional dissolved organic carbon (DOC) measurements.
DOC, chemical oxygen demand (COD), UV254, pH, turbidity, and color are common water quality parameters assessed by water treatment facilities in their quality control. Assessment of these parameters does not require sophisticated equipment, is simple and fast to perform, and can be automated. Yet, such assessments offer no information about the characteristics of NOM such as molar mass (MM) or hydrophobicity.
Traditionally, humic substances have been classified into three categories based on their solubility: humic acid (HA), fulvic acid (FA), and humin. This is an operational division, however; the terms do not refer to single compounds but to a wide range of compounds of similar origin (Uyguner-Demirel and Bekbolet, 2011). NOM may be characterized by high performance size exclusion chromatography (HPSEC) analysis, which determines the molecular weight distribution (MWD) of NOM (Chow et al., 2008; Korshin et al., 2009), or by fractionation techniques that use resins to divide the mixture of organic compounds of NOM into hydrophilic and hydrophobic fractions (Sharp et al., 2006a,b). Although these parameters provide useful information regarding the change in organic characteristics during treatment and impact on DBP formation, it has...

Erscheint lt. Verlag 7.10.2014
Sprache englisch
Themenwelt Sozialwissenschaften Kommunikation / Medien Buchhandel / Bibliothekswesen
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-12-801719-8 / 0128017198
ISBN-13 978-0-12-801719-7 / 9780128017197
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 5,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 6,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
A Holistic Approach to Library Collection Management

von Holly Hibner; Mary Kelly

eBook Download (2023)
Elsevier Science (Verlag)
69,95
Perspektiven für die Gestaltung

von Marc Kirschbaum; Richard Stang

eBook Download (2022)
De Gruyter (Verlag)
124,95