Formulation of Uncertainty Relation Between Error and Disturbance in Quantum Measurement by Using Quantum Estimation Theory (eBook)

(Autor)

eBook Download: PDF
2013 | 2014
XIII, 122 Seiten
Springer Tokyo (Verlag)
978-4-431-54493-7 (ISBN)

Lese- und Medienproben

Formulation of Uncertainty Relation Between Error and Disturbance in Quantum Measurement by Using Quantum Estimation Theory - Yu Watanabe
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

In this thesis, quantum estimation theory is applied to investigate uncertainty relations between error and disturbance in quantum measurement. The author argues that the best solution for clarifying the attainable bound of the error and disturbance is to invoke the estimation process from the measurement outcomes such as signals from a photodetector in a quantum optical system. The error and disturbance in terms of the Fisher information content have been successfully formulated and provide the upper bound of the accuracy of the estimation. Moreover, the attainable bound of the error and disturbance in quantum measurement has been derived.
The obtained bound is determined for the first time by the quantum fluctuations and correlation functions of the observables, which characterize the non-classical fluctuation of the observables. The result provides the upper bound of our knowledge obtained by quantum measurements.
The method developed in this thesis will be applied to a broad class of problems related to quantum measurement to build a next-generation clock standard and to successfully detect gravitational waves.



Dr. Yu Watanabe
Kyoto University
Kitashirakawa Oiwake-Cho,
Sakyo-Ku, Kyoto
606-8502 Japan
yuwata@yukawa.kyoto-u.ac.jp
In this thesis, quantum estimation theory is applied to investigate uncertainty relations between error and disturbance in quantum measurement. The author argues that the best solution for clarifying the attainable bound of the error and disturbance is to invoke the estimation process from the measurement outcomes such as signals from a photodetector in a quantum optical system. The error and disturbance in terms of the Fisher information content have been successfully formulated and provide the upper bound of the accuracy of the estimation. Moreover, the attainable bound of the error and disturbance in quantum measurement has been derived.The obtained bound is determined for the first time by the quantum fluctuations and correlation functions of the observables, which characterize the non-classical fluctuation of the observables. The result provides the upper bound of our knowledge obtained by quantum measurements.The method developed in this thesis will be applied to a broad class of problems related to quantum measurement to build a next-generation clock standard and to successfully detect gravitational waves.

Dr. Yu Watanabe Kyoto University Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502 Japan yuwata@yukawa.kyoto-u.ac.jp

Supervisor’s Foreword 7
Acknowledgments 9
Contents 10
1 Introduction 13
References 17
2 Reviews of Uncertainty Relations 19
2.1 Heisenberg's Gamma-Ray Microscope 19
2.2 Von Neumann's Doppler Speed Meter 21
2.3 Kennard-Robertson's Inequality and Schrodinger's Inequality 23
2.4 Arthurs-Goodman's Inequality 24
2.5 Ozawa's Inequality 26
References 29
3 Classical Estimation Theory 30
3.1 Parameter Estimation of Probability Distributions 30
3.2 Cramer-Rao Inequality and Fisher Information 34
3.3 Monotonicity of the Fisher Information and Cencov's Theorem 39
3.4 Maximum Likelihood Estimator 41
References 47
4 Quantum Estimation Theory 48
4.1 Parameter Estimation of Quantum States 48
4.2 Monotonicity of the Fisher Information in Quantum Measurement 49
4.3 Quantum Cramer-Rao Inequality and Quantum Fisher Information 50
4.4 Adaptive Measurement 53
References 55
5 Expansion of Linear Operators by Generators of Lie Algebra su(d) 56
5.1 Generators of Lie Algebra su(d) 56
5.2 Quantum State and Bloch Space 58
5.3 Observable 62
5.4 Quantum Measurement 64
5.4.1 Positive Operator-Valued Measure (POVM) Measurement 64
5.4.2 Projection-Valued Measure (PVM) Measurement and Spectral Decomposition 65
5.5 Quantum Operation 67
5.5.1 Unitary Evolution 69
5.5.2 Interaction with an Environment 70
5.5.3 Measurement Processes 72
References 81
6 Lie Algebraic Approach to the Fisher Information Contents 82
6.1 Classical Fisher Information 82
6.1.1 Positive State Model 84
6.1.2 Block Diagonal State Model 87
6.1.3 Decohered State Model 90
6.2 SLD Fisher Information 91
6.2.1 Positive State Model 92
6.2.2 Block Diagonal State Model 93
6.2.3 Decohered State Model 95
6.3 RLD Fisher Information 95
6.3.1 Positive State Model 96
6.3.2 Block Diagonal State Model 97
6.3.3 Decohered State Model 98
Reference 99
7 Error and Disturbance in Quantum Measurements 100
7.1 Error in Quantum Measurement 100
7.1.1 Comparison with the Error Defined by Arthurs and Goodman 105
7.1.2 Comparison with the Error Defined by Ozawa 106
7.2 Disturbance in Quantum Measurement 107
References 111
8 Uncertainty Relations Between Measurement Errors of Two Observables 112
8.1 Setup 112
8.2 Heisenberg-Type Uncertainty Relation 114
8.3 Attainable Bound of the Product of the Measurement Errors 115
References 124
9 Uncertainty Relations Between Error and Disturbance in Quantum Measurements 125
9.1 Heisenberg's Uncertainty Relation in Terms of Fisher Information Contents 125
9.2 Attainable Bound of the Product of Error and Disturbance 127
10 Summary and Discussion 130
References 131

Erscheint lt. Verlag 17.12.2013
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XIII, 122 p. 8 illus., 5 illus. in color.
Verlagsort Tokyo
Sprache englisch
Themenwelt Geisteswissenschaften
Mathematik / Informatik Informatik
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Quantenphysik
Naturwissenschaften Physik / Astronomie Thermodynamik
Sozialwissenschaften Pädagogik
Technik Maschinenbau
Schlagworte Attainable Bound of Uncertainty Relation • Estimation Theory of Error and Disturbance • Heisenberg’s Uncertainty Relation • Information Theoretic Formulation of Error and Disturbance • Lie algebra • Quantum Fisher Information • Quantum Measurement
ISBN-10 4-431-54493-3 / 4431544933
ISBN-13 978-4-431-54493-7 / 9784431544937
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Fundamentals and Methods

von Thomas Fauster; Lutz Hammer; Klaus Heinz …

eBook Download (2020)
De Gruyter Oldenbourg (Verlag)
49,95
Concepts, Phenomena, and Applications

von Wim van Saarloos; Vincenzo Vitelli; Zorana Zeravcic

eBook Download (2023)
Princeton University Press (Verlag)
94,99