Statistical Learning from a Regression Perspective - Richard Berk

Statistical Learning from a Regression Perspective

(Autor)

Buch | Softcover
377 Seiten
2010 | 1st ed. Softcover of orig. ed. 2008
Springer-Verlag New York Inc.
978-1-4419-2654-8 (ISBN)
139,09 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This book considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response.
Statistical Learning from a Regression Perspective considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a first approximation, this is can be seen as an extension of nonparametric regression. Among the statistical learning procedures examined are bagging, random forests, boosting, and support vector machines. Response variables may be quantitative or categorical. Real applications are emphasized, especially those with practical implications. One important theme is the need to explicitly take into account asymmetric costs in the fitting process. For example, in some situations false positives may be far less costly than false negatives. Another important theme is to not automatically cede modeling decisions to a fitting algorithm. In many settings, subject-matter knowledge should trump formal fitting criteria. Yet another important theme is to appreciate the limitation of one's data and not apply statistical learning procedures that require more than the data can provide.
The material is written for graduate students in the social and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems. Intuitive explanations and visual representations are prominent. All of the analyses included are done in R.

Statistical Learning as a Regression Problem.- Regression Splines and Regression Smoothers.- Classification and Regression Trees (CART).- Bagging.- Random Forests.- Boosting.- Support Vector Machines.- Broader Implications and a Bit of Craft Lore.

Erscheint lt. Verlag 19.11.2010
Reihe/Serie Springer Series in Statistics
Zusatzinfo biography
Verlagsort New York, NY
Sprache englisch
Maße 156 x 234 mm
Gewicht 581 g
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Studium Querschnittsbereiche Prävention / Gesundheitsförderung
Sozialwissenschaften Soziologie Empirische Sozialforschung
ISBN-10 1-4419-2654-2 / 1441926542
ISBN-13 978-1-4419-2654-8 / 9781441926548
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
das Manual zur psychologischen Gesundheitsförderung

von Gert Kaluza

Buch | Hardcover (2023)
Springer Berlin (Verlag)
39,99
Orthomolekulare Medizin in Prävention, Diagnostik und Therapie

von Volker Schmiedel

Buch | Hardcover (2022)
Thieme (Verlag)
71,00