Algebraische Geometrie

Eine Einführung

(Autor)

Buch | Hardcover
XV, 470 Seiten
1989
Springer Basel (Verlag)
978-3-7643-1779-9 (ISBN)

Lese- und Medienproben

Algebraische Geometrie - Markus Brodmann
37,99 inkl. MwSt
Diese Einführung in die algebraische Geometrie richtet sich an Studierende mittlere und höhere Semester. Vorausgesetzt werden lediglich die im ersten Studienjahr erworbenen Grundkenntnisse. Ausgehend von den affinen Hyperflächen werden beliebige affine und schliesslich projektive Varietäten untersucht. Die benötigte Algebra wird dabei laufend entwickelt. Schwerpunkte des Buches sind die Dimensions- und Morphismentheorie, die Multiplizitätstheorie sowie der Gradbegriff. Zahlreiche Beispiele sollen dem Leser helfen, sich über die konkrete Bedeutung des Stoffes klarzuwerden.

I. Affine Hyperflächen.- 1. Algebraische Mengen.- 2. Elementare Eigenschaften von Polynomen.- 3. Vielfachheit und Singularitäten.- 4. Tangentialkegel und Grad.- II. Affine Varietäten.- 5. Der Polynomring.- 6. Zariski-Topologie und Koordinatenringe.- 7. Morphismen.- 8. Lokale Ringe, Produkte.- III. Endliche Morphismen und Dimension.- 9. Ganze Erweiterungen.- 10. Dimensionstheorie.- 11. Topologische Eigenschaften von Morphismen.- 12. Quasiendliche und birationale Morphismen.- IV. Tangentialraum und Multiplizität.- 13. Der Tangentialraum.- 14. Stratifikation.- 15. Hilbert-Samuel-Polynome.- 16. Multiplizität und Tangentialkegel.- V. Projektive Varietäten.- 17. Der projektive Raum.- 18. Morphismen.- 19. Grad und Schnittvielfachheit.- 20. Ebene projektive Kurven.- VI. Garben.- 21. Grundbegriffe der Garbentheorie.- 22. Kohärente Garben.- 23. Tangentialfelder und Kähler-Differentiale.- 24. Die Picard-Gruppe.- 25. Kohärente Garben über projektiven Varietäten.- Bibliographie.

Erscheint lt. Verlag 1.9.1989
Reihe/Serie Basler Lehrbücher
Zusatzinfo XV, 470 S.
Verlagsort Basel
Sprache deutsch
Maße 178 x 254 mm
Gewicht 842 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Sozialwissenschaften
Schlagworte Algebraische Geometrie • Dimension • Funktionenkörper • Garbe • Grad • Hilbert-Samuel-Polynom • Hyperfläche • kohärente Garbe • Morphismus • Normalität • projektive Varietät • reguläre Funktion • Satz von Bézout • Veronese-Einbettung • Zariski-Topologie
ISBN-10 3-7643-1779-5 / 3764317795
ISBN-13 978-3-7643-1779-9 / 9783764317799
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
how geometry rules the universe

von Shing-Tung Yau; Steve Nadis

Buch | Hardcover (2024)
Basic Books (Verlag)
31,15