Für diesen Artikel ist leider kein Bild verfügbar.

Laser Processing and Analysis of Materials

(Autor)

Buch | Hardcover
478 Seiten
1983
Kluwer Academic/Plenum Publishers (Verlag)
978-0-306-41067-3 (ISBN)
85,55 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
It has often been said that the laser is a solution searching for a problem. The rapid development of laser technology over the past dozen years has led to the availability of reliable, industrially rated laser sources with a wide variety of output characteristics. This, in turn, has resulted in new laser applications as the laser becomes a familiar processing and analytical tool. The field of materials science, in particular, has become a fertile one for new laser applications. Laser annealing, alloying, cladding, and heat treating were all but unknown 10 years ago. Today, each is a separate, dynamic field of research activity with many of the early laboratory experiments resulting in the development of new industrial processing techniques using laser technology. Ten years ago, chemical processing was in its infancy awaiting, primarily, the development of reliable tunable laser sources. Now, with tunability over the entire spectrum from the vacuum ultraviolet to the far infrared, photo- chemistry is undergoing revolutionary changes with several proven and many promising commercial laser processing operations as the result.
The ability of laser sources to project a probing beam of light into remote or hostile environments has led to the development of a wide variety of new analytical techniques in environmental and laboratory analysis. Many of these are reviewed in this book.

1 Lasers and Laser Radiation.- 1.1. Introduction.- 1.2. Laser Sources.- 1.2.1. Ruby Laser.- 1.2.2. Nd-YAG Laser.- 1.2.3. Nd-Glass Laser.- 1.2.4. Tunable Infrared Diode Lasers.- 1.2.5. Helium-Neon Laser.- 1.2.6. Argon and Krypton Ion Lasers.- 1.2.7. Helium-Cadmium Laser.- 1.2.8. CO2 Laser.- 1.2.9. Rare Gas Halide Lasers.- 1.2.10. Dye Lasers.- 1.2.11. Stimulated Raman Scattering.- 1.3. Laser Radiation.- 1.3.1. Monochromaticity.- 1.3.2. Beam Shape.- 1.3.3. Beam Divergence.- 1.3.4. Brightness.- 1.3.5. Focusing of Laser Radiation.- 1.3.6. Coherence.- 1.4. Lens Aberrations.- 1.4.1. Spherical Aberration.- 1.4.2. Coma.- 1.4.3. Astigmatism.- 1.4.4. Field Curvature.- 1.4.5. Distortion.- 1.5. Window Materials.- 1.6. Mirrors and Polarizers.- 1.7. Q-Switching.- 1.7.1. Acousto-Optical Q-Switches.- 1.7.2. Electro-Optical Q-Switches.- 1.7.3. Passive Q-Switching.- 1.8. Frequency Conversion.- 1.9. Mode Locking.- 1.10. Detectors and Power Meters.- 1.10.1. Power Meters.- 1.10.2. Radiation Detectors.- 2. Materials Processing.- 2.1. Absorption of Laser Radiation by Metals.- 2.2. Absorption of Laser Radiation by Semiconductors and Insulators.- 2.3. Thermal Constants.- 2.4. Laser Drilling: Heat Transfer.- 2.4.1. Heating without Change of Phase.- 2.4.2. Heating with Change of Phase.- 2.4.3. Experimental.- 2.5. Welding.- 2.5.1. Heat Transfer-Penetration Welding.- 2.5.2. Heat Transfer-Conduction Welding.- 2.5.3. Welding with Multikilowatt Lasers.- 2.5.4. Welding with Low-Power Lasers.- 2.5.5. Laser Spot Welding.- 2.6. Cutting.- 2.6.1. Heat Transfer.- 2.6.2. Cutting Metals.- 2.6.3. Cutting Nonmetals.- 2.6.4. Scribing and Controlled Fracture.- 2.7. Micromachining.- 2.7.1. Resistor Trimming.- 2.7.2. Machining of Conductor Patterns.- 2.7.3. Fabrication of Gap Capacitors.- 2.7.4. Image Recording.- 2.7.5. Laser Marking.- 2.7.6. Micromachining-Thermal Considerations.- 2.8. Surface Hardening.- 2.9. Surface Melting, Alloying, and Cladding.- 2.10. Surface Cleaning.- 2.11. Crystal Growth.- 2.12. Optical Fiber Splicing.- 2.12.1. Optical Fiber-End Preparation.- 2.12.2. Optical Fiber-Drawing.- 2.13. Laser Deposition of Thin Films.- 2.13.1. Evaporation.- 2.13.2. Electroplating.- 2.13.3. Chemical Vapor Deposition.- 2.13.4. Photodeposition and Photoetching.- 3 Laser Processing of Semiconductors.- 3.1. Introduction.- 3.2. Annealing.- 3.3. Annealing-CW Lasers.- 3.4. Recrystallization.- 3.5. Silicide Formation.- 3.6. Ohmic Contacts and Junction Formation.- 3.7. Device Fabrication.- 3.8. Electrical Connections on Integrated Circuits.- 3.9. Monolithic Displays.- 4 Chemical Processing.- 4.1. Introduction.- 4.2. Schemes for Laser Isotope Separation.- 4.3. The Enrichment Factor.- 4.4. Laser-Induced Reaction.- 4.5. Single-Photon Predissociation.- 4.6. Two-Photon Dissociation.- 4.7. Photoisomerization.- 4.8. Two-Step Photoionization.- 4.9. Photodeflection.- 4.10. Multiphoton Dissociation.- 4.10.1. Deuterium.- 4.10.2. Boron.- 4.10.3. Carbon.- 4.10.4. Silicon.- 4.10.5. Sulfur.- 4.10.6. Chlorine.- 4.10.7. Molybdenum.- 4.10.8. Osmium.- 4.10.9. Uranium.- 4.11. Selective Raman Excitation.- 4.12. Economics of Laser Isotope Separation.- 4.13. Laser-Induced Reactions.- 4.13.1. Infrared Photochemistry-Basic Mechanisms.- 4.13.2. Vibrationally Enhanced Chemical Reactions.- 4.13.3. Vibrationally Induced Decomposition.- 4.14. Isomerization.- 4.15. Lasers in Catalysis.- 4.16. Laser-Induced Reactions: UV-VIS Excitation.- 4.17. Processing via Thermal Heating.- 4.18. Polymerization.- 5 Lasers in Chemical Analysis.- 5.1. Introduction.- 5.2. Absorption Spectroscopy.- 5.2.1. Absorption vs. Other Techniques.- 5.2.2. Intracavity Absorption.- 5.3. Laser-Induced Fluorescence.- 5.3.1. Laser-Induced Fluorescence: Theory.- 5.3.2. Laser-Excited Atomic Flame Fluorescence.- 5.3.3. Laser-Excited Molecular Flame Fluorescence.- 5.3.4. Beam Diagnostics.- 5.3.5. Fluorimetry and Phosphorimetry.- 5.3.6. Selective Excitation of Probe Ion Luminescence.- 5.4. Laser-Enhanced Ionization Spectroscopy.- 5.5. Multiphoton Ionization.- 5.6. Raman Spectroscopy.- 5.6.1. Theory and Physical Principles.- 5.6.2. Experimental Techniques.- 5.6.3. Experimental Results.- 5.6.4. Coherent Anti-Stokes Raman Spectroscopy.- 5.7. Laser Magnetic Resonance.- 5.8. Laser Photoacoustic Spectroscopy.- 5.8.1. LPS of Gases.- 5.8.2. LPS of Liquids and Solids.- 5.8.3. Photoacoustic Imaging.- 5.9. Laser Microprobe.- 5.10. Atomic Absorption Spectrometry.- 5.11. Laser Microprobe Mass Spectrometer.- 5.12. Laser Raman Microprobe.- 5.13. Lasers in Chromatography.- 6 Lasers in Environmental Analysis.- 6.1. Propagation of Laser Radiation through the Atmosphere.- 6.2. Laser Remote Sensing of the Atmosphere.- 6.2.1. Absorption Measurements.- 6.2.2. LIDAR.- 6.2.3. Laser Remote Sensing of Wind Velocity.- 6.2.4. Raman LIDAR.- 6.2.5. Differential Absorption LIDAR (DIAL).- 6.2.6. Resonance Fluorescence.- 6.2.7. Heterodyne Detection.- 6.3. Laser Sampling of Aerosols.- 6.3.1. Particle Size and Distribution.- 6.3.2. Particle Composition.- 6.3.3. Interaction of High-Power Laser Radiation with Aerosol Particles.- 6.4. Laser Remote Sensing of Water Quality.- References.- Materials Index.

Zusatzinfo 86 black & white illustrations, biography
Sprache englisch
Themenwelt Schulbuch / Wörterbuch
Technik
ISBN-10 0-306-41067-2 / 0306410672
ISBN-13 978-0-306-41067-3 / 9780306410673
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
für die Sekundatstufe II und die Weiterbildung

von Adrian S. Müller; Alexander Bieger; Dino Cerutti

Buch | Softcover (2023)
hep verlag
29,00