Introduction to Axiomatic Set Theory - G. Takeuti, W. M. Zaring

Introduction to Axiomatic Set Theory

Buch | Softcover
258 Seiten
1971 | 1971 ed.
Springer-Verlag New York Inc.
978-0-387-05302-8 (ISBN)
85,59 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
In 1963, the first author introduced a course in set theory at the Uni- versity of Illinois whose main objectives were to cover G6del's work on the consistency of the axiom of choice (AC) and the generalized con- tinuum hypothesis (GCH), and Cohen's work on the independence of AC and the GCH. Notes taken in 1963 by the second author were the taught by him in 1966, revised extensively, and are presented here as an introduction to axiomatic set theory. Texts in set theory frequently develop the subject rapidly moving from key result to key result and suppressing many details. Advocates of the fast development claim at least two advantages. First, key results are highlighted, and second, the student who wishes to master the sub- ject is compelled to develop the details on his own. However, an in- structor using a "fast development" text must devote much class time to assisting his students in their efforts to bridge gaps in the text. We have chosen instead a development that is quite detailed and complete. For our slow development we claim the following advantages. The text is one from which a student can learn with little supervision and instruction.
This enables the instructor to use class time for the presentation of alternative developments and supplementary material.

1 Introduction.- 2 Language and Logic.- 3 Equality.- 4 Classes.- 5 The Elementary Properties of Classes.- 6 Functions and Relations.- 7 Ordinal Numbers.- 8 Ordinal Arithmetic.- 9 Relational Closure and the Rank Function.- 10 Cardinal Numbers.- 11 The Axiom of Choice, the Generalized Continuum Hypothesis and Cardinal Arithmetic.- 12 Models.- 13 Absoluteness.- 14 The Fundamental Operations.- 15 The Godel Model.- 16 The Arithmetization of Model Theory.- 17 Cohen's Method.- 18 Forcing.- 19 Languages, Structures, and Models.- Problem List.- Index of Symbols.

Reihe/Serie Graduate Texts in Mathematics ; 1
Zusatzinfo biography
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Gewicht 380 g
Themenwelt Sachbuch/Ratgeber Natur / Technik Garten
Mathematik / Informatik Mathematik Logik / Mengenlehre
ISBN-10 0-387-05302-6 / 0387053026
ISBN-13 978-0-387-05302-8 / 9780387053028
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Obst- und Ziergehölze, Stauden, Kübel- und Zimmerpflanzen richtig …

von Hansjörg Haas

Buch | Hardcover (2023)
Gräfe und Unzer (Verlag)
34,00
ganzjährig attraktive Beete bei Hitze und Trockenheit

von Bernd Hertle

Buch | Hardcover (2023)
Gräfe und Unzer Verlag GmbH
19,99