Data-Centric Machine Learning with Python (eBook)

The ultimate guide to engineering and deploying high-quality models based on good data
eBook Download: EPUB
2024
378 Seiten
Packt Publishing (Verlag)
978-1-80461-241-5 (ISBN)

Lese- und Medienproben

Data-Centric Machine Learning with Python - Jonas Christensen, Nakul Bajaj, Manmohan Gosada
Systemvoraussetzungen
35,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

In the rapidly advancing data-driven world where data quality is pivotal to the success of machine learning and artificial intelligence projects, this critically timed guide provides a rare, end-to-end overview of data-centric machine learning (DCML), along with hands-on applications of technical and non-technical approaches to generating deeper and more accurate datasets.
This book will help you understand what data-centric ML/AI is and how it can help you to realize the potential of 'small data'. Delving into the building blocks of data-centric ML/AI, you'll explore the human aspects of data labeling, tackle ambiguity in labeling, and understand the role of synthetic data. From strategies to improve data collection to techniques for refining and augmenting datasets, you'll learn everything you need to elevate your data-centric practices. Through applied examples and insights for overcoming challenges, you'll get a roadmap for implementing data-centric ML/AI in diverse applications in Python.
By the end of this book, you'll have developed a profound understanding of data-centric ML/AI and the proficiency to seamlessly integrate common data-centric approaches in the model development lifecycle to unlock the full potential of your machine learning projects by prioritizing data quality and reliability.


Join the data-centric revolution and master the concepts, techniques, and algorithms shaping the future of AI and ML development, using PythonKey FeaturesGrasp the principles of data centricity and apply them to real-world scenariosGain experience with quality data collection, labeling, and synthetic data creation using PythonDevelop essential skills for building reliable, responsible, and ethical machine learning solutionsPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionIn the rapidly advancing data-driven world where data quality is pivotal to the success of machine learning and artificial intelligence projects, this critically timed guide provides a rare, end-to-end overview of data-centric machine learning (DCML), along with hands-on applications of technical and non-technical approaches to generating deeper and more accurate datasets. This book will help you understand what data-centric ML/AI is and how it can help you to realize the potential of small data . Delving into the building blocks of data-centric ML/AI, you ll explore the human aspects of data labeling, tackle ambiguity in labeling, and understand the role of synthetic data. From strategies to improve data collection to techniques for refining and augmenting datasets, you ll learn everything you need to elevate your data-centric practices. Through applied examples and insights for overcoming challenges, you ll get a roadmap for implementing data-centric ML/AI in diverse applications in Python. By the end of this book, you ll have developed a profound understanding of data-centric ML/AI and the proficiency to seamlessly integrate common data-centric approaches in the model development lifecycle to unlock the full potential of your machine learning projects by prioritizing data quality and reliability.What you will learnUnderstand the impact of input data quality compared to model selection and tuningRecognize the crucial role of subject-matter experts in effective model developmentImplement data cleaning, labeling, and augmentation best practicesExplore common synthetic data generation techniques and their applicationsApply synthetic data generation techniques using common Python packagesDetect and mitigate bias in a dataset using best-practice techniquesUnderstand the importance of reliability, responsibility, and ethical considerations in ML/AIWho this book is forThis book is for data science professionals and machine learning enthusiasts looking to understand the concept of data-centricity, its benefits over a model-centric approach, and the practical application of a best-practice data-centric approach in their work. This book is also for other data professionals and senior leaders who want to explore the tools and techniques to improve data quality and create opportunities for small data ML/AI in their organizations.]]>
Erscheint lt. Verlag 29.2.2024
Vorwort Kirk D. Borne
Sprache englisch
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Sammeln / Sammlerkataloge
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-80461-241-3 / 1804612413
ISBN-13 978-1-80461-241-5 / 9781804612415
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99