Python for Finance Cookbook (eBook)

Over 50 recipes for applying modern Python libraries to financial data analysis
eBook Download: EPUB
2020
432 Seiten
Packt Publishing (Verlag)
978-1-78961-732-0 (ISBN)

Lese- und Medienproben

Python for Finance Cookbook -  Lewinson Eryk Lewinson
Systemvoraussetzungen
35,41 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Solve common and not-so-common financial problems using Python libraries such as NumPy, SciPy, and pandas




Key Features



  • Use powerful Python libraries such as pandas, NumPy, and SciPy to analyze your financial data


  • Explore unique recipes for financial data analysis and processing with Python


  • Estimate popular financial models such as CAPM and GARCH using a problem-solution approach



Book Description



Python is one of the most popular programming languages used in the financial industry, with a huge set of accompanying libraries.







In this book, you'll cover different ways of downloading financial data and preparing it for modeling. You'll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, RSI, and backtest automatic trading strategies. Next, you'll cover time series analysis and models, such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and the Fama-French three-factor model. You'll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you'll work through an entire data science project in the financial domain. You'll also learn how to solve the credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models. You'll then be able to tune the hyperparameters of the models and handle class imbalance. Finally, you'll focus on learning how to use deep learning (PyTorch) for approaching financial tasks.







By the end of this book, you'll have learned how to effectively analyze financial data using a recipe-based approach.




What you will learn



  • Download and preprocess financial data from different sources


  • Backtest the performance of automatic trading strategies in a real-world setting


  • Estimate financial econometrics models in Python and interpret their results


  • Use Monte Carlo simulations for a variety of tasks such as derivatives valuation and risk assessment


  • Improve the performance of financial models with the latest Python libraries


  • Apply machine learning and deep learning techniques to solve different financial problems


  • Understand the different approaches used to model financial time series data



Who this book is for



This book is for financial analysts, data analysts, and Python developers who want to learn how to implement a broad range of tasks in the finance domain. Data scientists looking to devise intelligent financial strategies to perform efficient financial analysis will also find this book useful. Working knowledge of the Python programming language is mandatory to grasp the concepts covered in the book effectively.


Solve common and not-so-common financial problems using Python libraries such as NumPy, SciPy, and pandasKey FeaturesUse powerful Python libraries such as pandas, NumPy, and SciPy to analyze your financial dataExplore unique recipes for financial data analysis and processing with PythonEstimate popular financial models such as CAPM and GARCH using a problem-solution approachBook DescriptionPython is one of the most popular programming languages used in the financial industry, with a huge set of accompanying libraries.In this book, you'll cover different ways of downloading financial data and preparing it for modeling. You'll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, RSI, and backtest automatic trading strategies. Next, you'll cover time series analysis and models, such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and the Fama-French three-factor model. You'll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you'll work through an entire data science project in the financial domain. You'll also learn how to solve the credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models. You'll then be able to tune the hyperparameters of the models and handle class imbalance. Finally, you'll focus on learning how to use deep learning (PyTorch) for approaching financial tasks.By the end of this book, you'll have learned how to effectively analyze financial data using a recipe-based approach.What you will learnDownload and preprocess financial data from different sourcesBacktest the performance of automatic trading strategies in a real-world settingEstimate financial econometrics models in Python and interpret their resultsUse Monte Carlo simulations for a variety of tasks such as derivatives valuation and risk assessmentImprove the performance of financial models with the latest Python librariesApply machine learning and deep learning techniques to solve different financial problemsUnderstand the different approaches used to model financial time series dataWho this book is forThis book is for financial analysts, data analysts, and Python developers who want to learn how to implement a broad range of tasks in the finance domain. Data scientists looking to devise intelligent financial strategies to perform efficient financial analysis will also find this book useful. Working knowledge of the Python programming language is mandatory to grasp the concepts covered in the book effectively.
Erscheint lt. Verlag 31.1.2020
Sprache englisch
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Sammeln / Sammlerkataloge
Mathematik / Informatik Informatik Theorie / Studium
Schlagworte Bollinger bands • CAPM • Finance • Financial Data Analysis • financial methods • GARCH • MACD • NumPy • Pandas • Python • RSI • SciPy
ISBN-10 1-78961-732-4 / 1789617324
ISBN-13 978-1-78961-732-0 / 9781789617320
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 25,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
The Process of Leading Organizational Change

von Donald L. Anderson

eBook Download (2023)
Sage Publications (Verlag)
104,99
Reproductive Decisions in Urban Benin

von Carolyn Fishel Sargent

eBook Download (2023)
University of California Press (Verlag)
43,99
Interpreter of Constitutionalism in Japan

von Frank O. Miller

eBook Download (2023)
University of California Press (Verlag)
54,99