Das BUCH der Beweise (eBook)
VIII, 360 Seiten
Springer Berlin Heidelberg (Verlag)
978-3-662-57767-7 (ISBN)
Diese fünfte deutsche Auflage enthält ein ganz neues Kapitel über van der Waerdens Permanenten-Vermutung, sowie weitere neue, originelle und elegante Beweise in anderen Kapiteln.
Aus den Rezensionen:
'... es ist fast unmöglich, ein Mathematikbuch zu schreiben, das von jedermann gelesen und genossen werden kann, aber Aigner und Ziegler gelingt diese Meisterleistung in virtuosem Stil. [...] Dieses Buch erweist der Mathematik einen unschätzbaren Dienst, indem es Nicht-Mathematikern vorführt, was Mathematiker meinen, wenn sie über Schönheit sprechen.' Aus der Laudatio für den 'Steele Prize for Mathematical Exposition' 2018
'Was hier vorliegt ist eine Sammlung von Beweisen, die in das von Paul Erdös immer wieder zitierte BUCH gehören, das vom lieben (?) Gott verwahrt wird und das die perfekten Beweise aller mathematischen Sätze enthält. Manchmal lässt der Herrgott auch einige von uns Sterblichen in das BUCH blicken, und die so resultierenden Geistesblitze erhellen den Mathematikeralltag mit eleganten Argumenten, überraschenden Zusammenhängen und unerwarteten Volten.'
www.mathematik.de, Mai 2002
'Eine einzigartige Sammlung eleganter mathematischer Beweise nach der Idee von Paul Erdös, verständlich geschrieben von exzellenten Mathematikern. Dieses Buch gibt anregende Lösungen mit Aha-Effekt, auch für Nicht-Mathematiker.'
www.vismath.de
'Ein prächtiges, äußerst sorgfältig und liebevoll gestaltetes Buch! Erdös hatte die Idee DES BUCHES, in dem Gott die perfekten Beweise mathematischer Sätze eingeschrieben hat. Das hier gedruckte Buch will eine 'very modest approximation' an dieses BUCH sein.... Das Buch von Aigner und Ziegler ist gelungen ...' Mathematische Semesterberichte, November 1999
'Wer (wie ich) bislang vergeblich versucht hat, einen Blick ins BUCH zu werfen, wird begierig in Aigners und Zieglers BUCH der Beweise schmökern.'
www.mathematik.de, Mai 2002
Martin Aigner wurde an der Universität Wien promoviert und ist seit 1974 Professor für Mathematik an der Freien Universität Berlin. Er hat in verschiedenen Gebieten der Kombinatorik und Graphentheorie publiziert und ist der Autor mehrerer Monographien, darunter bei Springer Kombinatorik und Diskrete Mathematik. Martin Aigner wurde 1996 mit einem Lester R. Ford Award for Mathematical Exposition der Mathematical Association of America MAA ausgezeichnet.
Günter M. Ziegler hat am M.I.T. promoviert und ist seit 1995 Professor für Mathematik in Berlin, zunächst an der TU Berlin und jetzt an der Freien Universität. Er hat zur Diskreten Mathematik, Geometrie, Topologie und Optimierung publiziert, unter anderem Lectures on Polytopes bei Springer, aber auch 'Darf ich Zahlen? Geschichten aus der Mathematik' bei Piper und 'Mathematik - Das ist doch keine Kunst!' bei Knaus. Günter M. Ziegler erhielt für seine Leistungen in der Präsentation von Mathematik den Chauvenet-Preis 2006 der MAA und den Communicator-Preis 2008 der Deutschen Forschungsgemeinschaft.
Martin Aigner und Günter M. Ziegler haben ihre Arbeit am BUCH der Beweise 1995 gemeinsam mit Paul Erdös begonnen. Das Buch erschien zunächst 1998 auf Englisch und 2001 auf Deutsch. Es liegt jetzt schon in 12 weiteren Sprachen vor: auf Brasilianisch, Chinesisch, Farsi, Französisch, Italienisch, Japanisch, Koreanisch, Polnisch, Russisch, Spanisch, Türkisch und Ungarisch.
Martin Aigner wurde an der Universität Wien promoviert und ist seit 1974 Professor für Mathematik an der Freien Universität Berlin. Er hat in verschiedenen Gebieten der Kombinatorik und Graphentheorie publiziert und ist der Autor mehrerer Monographien, darunter bei Springer Kombinatorik und Diskrete Mathematik. Martin Aigner wurde 1996 mit einem Lester R. Ford Award for Mathematical Exposition der Mathematical Association of America MAA ausgezeichnet. Günter M. Ziegler hat am M.I.T. promoviert und ist seit 1995 Professor für Mathematik in Berlin, zunächst an der TU Berlin und jetzt an der Freien Universität. Er hat zur Diskreten Mathematik, Geometrie, Topologie und Optimierung publiziert, unter anderem Lectures on Polytopes bei Springer, aber auch „Darf ich Zahlen? Geschichten aus der Mathematik“ bei Piper und „Mathematik – Das ist doch keine Kunst!“ bei Knaus. Günter M. Ziegler erhielt für seine Leistungen in der Präsentation von Mathematik den Chauvenet-Preis 2006 der MAA und den Communicator-Preis 2008 der Deutschen Forschungsgemeinschaft. Martin Aigner und Günter M. Ziegler haben ihre Arbeit am BUCH der Beweise 1995 gemeinsam mit Paul Erdös begonnen. Das Buch erschien zunächst 1998 auf Englisch und 2001 auf Deutsch. Es liegt jetzt schon in 12 weiteren Sprachen vor: auf Brasilianisch, Chinesisch, Farsi, Französisch, Italienisch, Japanisch, Koreanisch, Polnisch, Russisch, Spanisch, Türkisch und Ungarisch.
Vorwort.- Zahlentheorie.- Geometrie.- Analysis.- Kombinatorik.- Graphentheorie.- Über die Abbildungen.- Stichwortverzeichnis.
Erscheint lt. Verlag | 17.9.2018 |
---|---|
Illustrationen | Karl H. Hofmann |
Zusatzinfo | VIII, 360 S. 288 Abb., 9 Abb. in Farbe. |
Verlagsort | Berlin |
Sprache | deutsch |
Themenwelt | Sachbuch/Ratgeber ► Natur / Technik ► Naturwissenschaft |
Mathematik / Informatik ► Mathematik | |
Schlagworte | combinatorics • Erdös Beweise • göttliche Beweise Mathe • Mathematik schöne Beweise • Mathematischer Beweis • Proofs from the BOOK • Schubfachprinzip |
ISBN-10 | 3-662-57767-4 / 3662577674 |
ISBN-13 | 978-3-662-57767-7 / 9783662577677 |
Haben Sie eine Frage zum Produkt? |
Größe: 16,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich