Scikit-learn Cookbook - Second Edition (eBook)

Over 80 recipes for machine learning in Python with scikit-learn
eBook Download: EPUB
2017
374 Seiten
Packt Publishing (Verlag)
978-1-78728-983-3 (ISBN)

Lese- und Medienproben

Scikit-learn Cookbook - Second Edition - Julian Avila, Trent Hauck
Systemvoraussetzungen
37,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Learn to use scikit-learn operations and functions for Machine Learning and deep learning applications.

About This Book

  • Handle a variety of machine learning tasks effortlessly by leveraging the power of scikit-learn
  • Perform supervised and unsupervised learning with ease, and evaluate the performance of your model
  • Practical, easy to understand recipes aimed at helping you choose the right machine learning algorithm

Who This Book Is For

Data Analysts already familiar with Python but not so much with scikit-learn, who want quick solutions to the common machine learning problems will find this book to be very useful. If you are a Python programmer who wants to take a dive into the world of machine learning in a practical manner, this book will help you too.

What You Will Learn

  • Build predictive models in minutes by using scikit-learn
  • Understand the differences and relationships between Classification and Regression, two types of Supervised Learning.
  • Use distance metrics to predict in Clustering, a type of Unsupervised Learning
  • Find points with similar characteristics with Nearest Neighbors.
  • Use automation and cross-validation to find a best model and focus on it for a data product
  • Choose among the best algorithm of many or use them together in an ensemble.
  • Create your own estimator with the simple syntax of sklearn
  • Explore the feed-forward neural networks available in scikit-learn

In Detail

Python is quickly becoming the go-to language for analysts and data scientists due to its simplicity and flexibility, and within the Python data space, scikit-learn is the unequivocal choice for machine learning. This book includes walk throughs and solutions to the common as well as the not-so-common problems in machine learning, and how scikit-learn can be leveraged to perform various machine learning tasks effectively.

The second edition begins with taking you through recipes on evaluating the statistical properties of data and generates synthetic data for machine learning modelling. As you progress through the chapters, you will comes across recipes that will teach you to implement techniques like data pre-processing, linear regression, logistic regression, K-NN, Naive Bayes, classification, decision trees, Ensembles and much more. Furthermore, you'll learn to optimize your models with multi-class classification, cross validation, model evaluation and dive deeper in to implementing deep learning with scikit-learn. Along with covering the enhanced features on model section, API and new features like classifiers, regressors and estimators the book also contains recipes on evaluating and fine-tuning the performance of your model.

By the end of this book, you will have explored plethora of features offered by scikit-learn for Python to solve any machine learning problem you come across.

Style and Approach

This book consists of practical recipes on scikit-learn that target novices as well as intermediate users. It goes deep into the technical issues, covers additional protocols, and many more real-live examples so that you are able to implement it in your daily life scenarios.


Learn to use scikit-learn operations and functions for Machine Learning and deep learning applications.About This BookHandle a variety of machine learning tasks effortlessly by leveraging the power of scikit-learnPerform supervised and unsupervised learning with ease, and evaluate the performance of your modelPractical, easy to understand recipes aimed at helping you choose the right machine learning algorithmWho This Book Is ForData Analysts already familiar with Python but not so much with scikit-learn, who want quick solutions to the common machine learning problems will find this book to be very useful. If you are a Python programmer who wants to take a dive into the world of machine learning in a practical manner, this book will help you too.What You Will LearnBuild predictive models in minutes by using scikit-learnUnderstand the differences and relationships between Classification and Regression, two types of Supervised Learning.Use distance metrics to predict in Clustering, a type of Unsupervised LearningFind points with similar characteristics with Nearest Neighbors.Use automation and cross-validation to find a best model and focus on it for a data productChoose among the best algorithm of many or use them together in an ensemble.Create your own estimator with the simple syntax of sklearnExplore the feed-forward neural networks available in scikit-learnIn DetailPython is quickly becoming the go-to language for analysts and data scientists due to its simplicity and flexibility, and within the Python data space, scikit-learn is the unequivocal choice for machine learning. This book includes walk throughs and solutions to the common as well as the not-so-common problems in machine learning, and how scikit-learn can be leveraged to perform various machine learning tasks effectively.The second edition begins with taking you through recipes on evaluating the statistical properties of data and generates synthetic data for machine learning modelling. As you progress through the chapters, you will comes across recipes that will teach you to implement techniques like data pre-processing, linear regression, logistic regression, K-NN, Naive Bayes, classification, decision trees, Ensembles and much more. Furthermore, you'll learn to optimize your models with multi-class classification, cross validation, model evaluation and dive deeper in to implementing deep learning with scikit-learn. Along with covering the enhanced features on model section, API and new features like classifiers, regressors and estimators the book also contains recipes on evaluating and fine-tuning the performance of your model.By the end of this book, you will have explored plethora of features offered by scikit-learn for Python to solve any machine learning problem you come across.Style and ApproachThis book consists of practical recipes on scikit-learn that target novices as well as intermediate users. It goes deep into the technical issues, covers additional protocols, and many more real-live examples so that you are able to implement it in your daily life scenarios.
Erscheint lt. Verlag 16.11.2017
Sprache englisch
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Sammeln / Sammlerkataloge
ISBN-10 1-78728-983-4 / 1787289834
ISBN-13 978-1-78728-983-3 / 9781787289833
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 6,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
The Process of Leading Organizational Change

von Donald L. Anderson

eBook Download (2023)
Sage Publications (Verlag)
99,99
Interpreter of Constitutionalism in Japan

von Frank O. Miller

eBook Download (2023)
University of California Press (Verlag)
49,99