Scala for Machine Learning - Second Edition (eBook)

eBook Download: EPUB
2017
740 Seiten
Packt Publishing (Verlag)
978-1-78712-620-6 (ISBN)

Lese- und Medienproben

Scala for Machine Learning - Second Edition - Patrick R. Nicolas
Systemvoraussetzungen
55,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Leverage Scala and Machine Learning to study and construct systems that can learn from data

About This Book

  • Explore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulation, and updated source code in Scala
  • Take your expertise in Scala programming to the next level by creating and customizing AI applications
  • Experiment with different techniques and evaluate their benefits and limitations using real-world applications in a tutorial style

Who This Book Is For

If you're a data scientist or a data analyst with a fundamental knowledge of Scala who wants to learn and implement various Machine learning techniques, this book is for you. All you need is a good understanding of the Scala programming language, a basic knowledge of statistics, a keen interest in Big Data processing, and this book!

What You Will Learn

  • Build dynamic workflows for scientific computing
  • Leverage open source libraries to extract patterns from time series
  • Write your own classification, clustering, or evolutionary algorithm
  • Perform relative performance tuning and evaluation of Spark
  • Master probabilistic models for sequential data
  • Experiment with advanced techniques such as regularization and kernelization
  • Dive into neural networks and some deep learning architecture
  • Apply some basic multiarm-bandit algorithms
  • Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters
  • Apply key learning strategies to a technical analysis of financial markets

In Detail

The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies.

The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naive Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You'll move on to evolutionary computing, multibandit algorithms, and reinforcement learning.

Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.

Style and approach

This book is designed as a tutorial with hands-on exercises using technical analysis of financial markets and corporate data. The approach of each chapter is such that it allows you to understand key concepts easily.


Leverage Scala and Machine Learning to study and construct systems that can learn from dataAbout This BookExplore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulation, and updated source code in ScalaTake your expertise in Scala programming to the next level by creating and customizing AI applicationsExperiment with different techniques and evaluate their benefits and limitations using real-world applications in a tutorial styleWho This Book Is ForIf you're a data scientist or a data analyst with a fundamental knowledge of Scala who wants to learn and implement various Machine learning techniques, this book is for you. All you need is a good understanding of the Scala programming language, a basic knowledge of statistics, a keen interest in Big Data processing, and this book!What You Will LearnBuild dynamic workflows for scientific computingLeverage open source libraries to extract patterns from time seriesWrite your own classification, clustering, or evolutionary algorithmPerform relative performance tuning and evaluation of SparkMaster probabilistic models for sequential dataExperiment with advanced techniques such as regularization and kernelizationDive into neural networks and some deep learning architectureApply some basic multiarm-bandit algorithmsSolve big data problems with Scala parallel collections, Akka actors, and Apache Spark clustersApply key learning strategies to a technical analysis of financial marketsIn DetailThe discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies.The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naive Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You'll move on to evolutionary computing, multibandit algorithms, and reinforcement learning.Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.Style and approachThis book is designed as a tutorial with hands-on exercises using technical analysis of financial markets and corporate data. The approach of each chapter is such that it allows you to understand key concepts easily.
Erscheint lt. Verlag 26.9.2017
Sprache englisch
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Sammeln / Sammlerkataloge
ISBN-10 1-78712-620-X / 178712620X
ISBN-13 978-1-78712-620-6 / 9781787126206
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 10,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
The Process of Leading Organizational Change

von Donald L. Anderson

eBook Download (2023)
Sage Publications (Verlag)
99,99
Interpreter of Constitutionalism in Japan

von Frank O. Miller

eBook Download (2023)
University of California Press (Verlag)
49,99