R for Data Science Cookbook (eBook)
452 Seiten
Packt Publishing (Verlag)
978-1-78439-204-8 (ISBN)
Over 100 hands-on recipes to effectively solve real-world data problems using the most popular R packages and techniques
About This Book
- Gain insight into how data scientists collect, process, analyze, and visualize data using some of the most popular R packages
- Understand how to apply useful data analysis techniques in R for real-world applications
- An easy-to-follow guide to make the life of data scientist easier with the problems faced while performing data analysis
Who This Book Is For
This book is for those who are already familiar with the basic operation of R, but want to learn how to efficiently and effectively analyze real-world data problems using practical R packages.
What You Will Learn
- Get to know the functional characteristics of R language
- Extract, transform, and load data from heterogeneous sources
- Understand how easily R can confront probability and statistics problems
- Get simple R instructions to quickly organize and manipulate large datasets
- Create professional data visualizations and interactive reports
- Predict user purchase behavior by adopting a classification approach
- Implement data mining techniques to discover items that are frequently purchased together
- Group similar text documents by using various clustering methods
In Detail
This cookbook offers a range of data analysis samples in simple and straightforward R code, providing step-by-step resources and time-saving methods to help you solve data problems efficiently.
The first section deals with how to create R functions to avoid the unnecessary duplication of code. You will learn how to prepare, process, and perform sophisticated ETL for heterogeneous data sources with R packages. An example of data manipulation is provided, illustrating how to use the 'dplyr' and 'data.table' packages to efficiently process larger data structures. We also focus on 'ggplot2' and show you how to create advanced figures for data exploration.
In addition, you will learn how to build an interactive report using the 'ggvis' package. Later chapters offer insight into time series analysis on financial data, while there is detailed information on the hot topic of machine learning, including data classification, regression, clustering, association rule mining, and dimension reduction.
By the end of this book, you will understand how to resolve issues and will be able to comfortably offer solutions to problems encountered while performing data analysis.
Style and approach
This easy-to-follow guide is full of hands-on examples of data analysis with R. Each topic is fully explained beginning with the core concept, followed by step-by-step practical examples, and concluding with detailed explanations of each concept used.
Over 100 hands-on recipes to effectively solve real-world data problems using the most popular R packages and techniquesAbout This BookGain insight into how data scientists collect, process, analyze, and visualize data using some of the most popular R packagesUnderstand how to apply useful data analysis techniques in R for real-world applicationsAn easy-to-follow guide to make the life of data scientist easier with the problems faced while performing data analysisWho This Book Is ForThis book is for those who are already familiar with the basic operation of R, but want to learn how to efficiently and effectively analyze real-world data problems using practical R packages.What You Will LearnGet to know the functional characteristics of R languageExtract, transform, and load data from heterogeneous sourcesUnderstand how easily R can confront probability and statistics problemsGet simple R instructions to quickly organize and manipulate large datasetsCreate professional data visualizations and interactive reportsPredict user purchase behavior by adopting a classification approachImplement data mining techniques to discover items that are frequently purchased togetherGroup similar text documents by using various clustering methodsIn DetailThis cookbook offers a range of data analysis samples in simple and straightforward R code, providing step-by-step resources and time-saving methods to help you solve data problems efficiently.The first section deals with how to create R functions to avoid the unnecessary duplication of code. You will learn how to prepare, process, and perform sophisticated ETL for heterogeneous data sources with R packages. An example of data manipulation is provided, illustrating how to use the "e;dplyr"e; and "e;data.table"e; packages to efficiently process larger data structures. We also focus on "e;ggplot2"e; and show you how to create advanced figures for data exploration.In addition, you will learn how to build an interactive report using the "e;ggvis"e; package. Later chapters offer insight into time series analysis on financial data, while there is detailed information on the hot topic of machine learning, including data classification, regression, clustering, association rule mining, and dimension reduction.By the end of this book, you will understand how to resolve issues and will be able to comfortably offer solutions to problems encountered while performing data analysis.Style and approachThis easy-to-follow guide is full of hands-on examples of data analysis with R. Each topic is fully explained beginning with the core concept, followed by step-by-step practical examples, and concluding with detailed explanations of each concept used.
Erscheint lt. Verlag | 29.7.2016 |
---|---|
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber ► Freizeit / Hobby ► Sammeln / Sammlerkataloge |
Mathematik / Informatik ► Informatik | |
Mathematik / Informatik ► Mathematik ► Computerprogramme / Computeralgebra | |
ISBN-10 | 1-78439-204-9 / 1784392049 |
ISBN-13 | 978-1-78439-204-8 / 9781784392048 |
Haben Sie eine Frage zum Produkt? |
Größe: 18,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich