This important reference, edited by Ronald Ross Watson and Betsy Dokken, collects the research needed to make the distinct connection between pre-diabetes, diabetes, and cardiovascular disease. Glucose Intake and Utilization in Pre-Diabetes and Diabetes: Implications for Cardiovascular Disease explains the mechanisms of progression from pre-diabetes to diabetes to cardiovascular disease. Since pre-diabetes and diabetes are important cardiovascular disease risk factors, and impaired glucose metabolism among cardiac patients is extremely prevalent, the importance of reviewing pre-diabetes and its involvement in CVD complications is vital as one applies food and glycemic control to slow progress to diabetes and heart disease. The book further focuses on glucose intake and utilization in diabetes, including coverage of diabetes in the development and pathology of cardiovascular disease, risks and epidemiology of cardiovascular problems promoted by diabetes, macrovascular effects and their safety in therapy of diabetics, beta cell biology and therapy of diabetes, and nutrition to modulate diabetes. - Offers a complete review of cardiac health problems occurring with significant frequency in patients relative to their ability to regulate glucose- Presents coverage of the role of glucose utilization, development of pre-diabetes and the ultimate development of various cardiovascular diseases- Provides thorough dietary, nutrition, complementary and alternative botanical therapies for pre-diabetes and diabetes to halt the progression to cardiovascular disease
Front Cover 1
Glucose Intake and Utilization in Pre-Diabetes and Diabetes 4
Copyright Page 5
Dedication 6
Contents 8
List of Contributors 18
Preface 22
Part I: Pre-Diabetes in Health and Disease: Prevention and Treatment 22
Section 1: Modulation of Pre-Diabetes and Altered Glucose Metabolism: Pathophysiology, Drugs, Genetics, Epigenetics, and Nu... 22
Section 1A: Background on Pre-Diabetes and Its Management 22
Section 1B: Physiological Modulators of Pre-Diabetes and Cardiovascular Disease Development 22
Section 2: Nutrition and Food to Modulate Pre-Diabetes and Resulting Cardiac Disease 22
Section 2A: Mechanisms of Pre-Diabetes and Diabetes Modulation of Cardiac Tissues 22
Section 2B: Dietary Supplements in Prevention of Pre-Diabetes and Diabetes and Thus Related Cardiac Dysfunction 23
Part II: Diabetes 23
Section 3: Diabetes in Development and Pathology of Cardiovascular Disease 23
Section 3A: Role of Foods in Cardiovascular Problems Promoted by Diabetes 23
Section 3B: Exercise Diabetes and Cardiovascular Disease 23
Section 3C: Nutrition and Food to Modulate Diabetes: Heart and Vascular Health 23
About the Editors 24
Acknowledgments 26
I. Pre-Diabetes in Health and Disease: Prevention and Treatment 28
1 Modulation of Pre-Diabetes and Altered Glucose Metabolism: Pathophysiology, Drugs, Genetics, Epigenetics, and Nutrition 30
1A Background on pre-diabetes and its management 32
1 Early Origins of Health and Disease 32
Introduction 32
Developmental Programming of MS (CVD): Human Data 33
Excess Nutrients During Fetal Growth and Long-Term Consequences 33
Mechanisms Underlying Fetal Overgrowth 33
Effects of Maternal Gestational Weight Gain 33
Consequences of Being Large at Birth 33
Consequences of Exposure to Maternal Diabetes or Obesity In Utero 34
Undernutrition During Pregnancy as a Cause of MS and CVD 35
The Consequences of Being Small at Birth 35
The Thrifty Phenotype Hypothesis 35
Maternal Caloric Restriction: the Dutch Famine 35
The Consequences of Preterm Birth 35
Effects of Postnatal Nutrition and Catch-Up Growth 36
Developmental Programming of MS (CVD): Animal Models 37
Nutritional Modifications 37
Proteins and Caloric Restriction 37
Carbohydrates 38
High-Fat Diet 38
Neonatal Overnutrition and Catch-Up Growth 38
Animal Models of Human Type 1 and 2 Diabetes 38
Animal Models of T1D 38
Surgical Models 38
Chemical Model 38
Spontaneous Animal Models 39
NOD Mouse 39
BB Rat 39
Animal Models of T2D 39
Production of Spontaneous Diabetic Rats 39
Chemical Model 39
Animal Model of Gestational Diabetes 39
Uteroplacental Insufficiency 39
Glucocorticoids Exposure 39
Mechanisms 40
Oxidative Stress 40
Epigenetic Regulation 40
DNA Methylation 40
Histone Modifications 41
Non-coding RNAs 41
Conclusion 42
References 42
2 Diabetes and Obesity: The Impact of Their Coincidence on Health and Life 48
Introduction 48
Epidemiology 48
Pathophysiology 48
Metabolic Syndrome 50
Complications of Obesity and DM: Impact on Health and Life 50
Cardiovascular Complications 50
Renal Complications 51
Sexual Dysfunction 51
Osteoporosis 51
Ways to Prevent/Reduce the Risks 51
Lifestyle Modifications 51
Nutrition 51
Exercise 52
Medical Interventions 52
Pharmacotherapy 52
Bariatric Surgery 52
Summary 53
References 53
3 Diabetes: A New Horizon and Approach to Management 56
Introduction 56
Multidisciplinary Approach to Management 57
Glycemic Goals 57
Flexible Glycemic Targets 58
Non-Pharmacological Interventions for Glycemic Control 58
Diabetes Education 58
Lifestyle Modification 58
Dietary Modification 58
Exercise and Weight Reduction 59
Bariatric Surgery 59
Pharmacological Intervention for Diabetes Control 59
Monotherapy Versus Combination Therapy 59
Monotherapy 59
Combination Therapy 59
Classification of Pharmacological Agents 60
Insulin Sensitizers 60
Biguanides 60
Thiazilidinediones 61
Insulin Secretagogues 62
Sulfonylureas 62
Glinides 62
Alpha-Glucosidase Inhibitors 62
DPP-4 Inhibitors 63
Sodium-Glucose Co-Transporter Inhibitors 63
Injectable Anti-Diabetic Treatment 63
Insulin Therapy 63
Basal Insulins 64
Bolus Insulins 64
Premixed Insulins 65
Basal-Bolus Insulin Regimens 65
Side Effects of Insulin Therapy 65
Hypoglycemia 65
Weight Gain 65
Risk of Malignancy 65
GLP-1 Analogs 66
Exenatide 66
Liraglutide 66
Side Effects of GLP-1 Receptor Agonists 66
Pramlintide 66
New Therapeutic Modalities in Diabetes Management 67
Inhaled Insulin 67
New Insulin Analogs 67
Artificial Pancreas 67
Pancreas Transplantation 67
Islet Cell Transplantation 67
Islet Cell Regeneration Therapy 67
Key Recommendations to Achieve Optimum Diabetes Control 68
Conclusion 68
References 68
4 Psychosocial Factors Associated with Diabetes Self-Management 72
Psychosocial Factors Associated with Diabetes Self-Management 72
Self-Management Expectations and Adherence 72
Psychological Factors Associated with Diabetes Self-Management 73
Memory 73
Self-Efficacy 74
Diabetes-Related Distress, Depression, and Anxiety 74
Social Factors Associated with Diabetes Self-Management 75
Family and Friends 75
Patient–Provider Relationship 76
Broader Social Influences 77
Implications for Practice 78
Conclusion 79
References 79
5 The Relationship Between the Organization of Services for the Treatment of Type 2 Diabetes and the Risk of Long-Term Comp... 84
Introduction 84
Epidemiological Data 84
Diabetes Mellitus and Chronic Complications 84
Analysis of Current Organizational Systems 85
Analysis of Clinical Outcomes: Primary Care Physicians versus Diabetologists 85
Analysis of Organizational Models 85
The Role of the Diabetes Center 86
Integrated Management with PCPs 88
Integrated Management with PCPs and the Use of Telemedicine 90
Future Perspectives 93
References 94
6 Effects of Bariatric Surgery on Comorbid Conditions Associated with Morbid Obesity 98
Introduction 98
Current Surgical Therapies for Morbid Obesity 99
Restrictive Procedures 99
Malabsorptive Procedures with Some Restriction 99
Restrictive Procedure with Some Malabsorption 101
Effect of Bariatric Surgery on Weight Loss and Operative Mortality 101
Effect of Bariatric Surgery on Obesity-Related Comorbidities 101
Diabetes 101
Diabetes: Possible Mechanism(s) of Control After Surgery 102
OSA: The Effect of Bariatric Surgery 103
Dyslipidemia: The Effect of Bariatric Surgery 104
Hypertension: The Effect of Bariatric Surgery on Systolic, Diastolic, and Pulse Pressure 105
Liver Disease: The Effect of Bariatric Surgery on Nonalcoholic Fatty Liver Disease 106
Summary: Effect of Bariatric Surgery 107
References 107
7 Dietary Management of Pre-Diabetes and Type 2 Diabetes 112
Introduction 112
What Is “Pre-diabetes”? 112
Carbohydrate 113
Glycemic Index and Glycemic Load 113
Dietary Fiber and Complex Carbohydrate 113
Simple Sugars 113
Fat 113
Saturated Fat 114
Trans Fats 114
Polyunsaturated Fats 114
Fish Oils 114
Protein 114
Other Diets 114
Mediterranean Diets 114
Nuts 114
Probiotics 115
Vitamin Supplements 115
Vitamin D 115
Vitamin C 115
Specific Fruit/Vegetables 115
Gooseberries 115
Fenugreek 116
Green Tea 116
Bitter Lemon 116
Cinnamon 116
References 116
1B Physiological modulators of pre-diabetes and cardiovascular disease development 122
8 Insulin Resistance and Inflammation: Links Between Obesity and Cardiovascular Disease 122
Introduction 122
Free Fatty Acids 123
FFA and Insulin Resistance 123
Mechanisms of FFA-Induced Insulin Resistance 123
FFA and Inflammation 123
ER Stress 124
ER Stress, Insulin Resistance, and Inflammation 124
What Causes ER Stress in Obesity? 124
Mechanisms of ER Stress-Mediated Insulin Resistance/Inflammation 124
Hyperinsulinemia 124
Obesity, Insulin Resistance, and CVD 125
Insulin Resistance, Hyperinsulinemia, and CVD 125
Selective Insulin Resistance and Hyperinsulinemia 125
Hyperinsulinemia and Activation of Matrix Metalloproteinases 125
Hyperinsulinemia and Blood Coagulation 125
References 126
9 Cardiovascular Risk Assessment in Pre-Diabetes: A Hypothesis 130
Introduction 130
Background to Hypothesis 131
Dysglycemias in Diabetes and Pre-diabetes Are Apparently the Same 131
Hyperglycemic Toxicity 131
Diabetic Dyslipidemia 132
Metabolic Syndrome 132
Hyperglycemia-Induced OS Is Primary to Development of Hypertension in Diabetes 132
The VT Are Indices of Oxidative Damage Associated with Diabetic Macrovascular Progression 133
There Is up to 25% Prevalence of Pre-diabetes Concomitant with Dyslipidemia in the General Population 133
The Problems 134
Programs for Identification of Pre-diabetes and UDM Are Limited 134
Current Cardiovascular Risk Screening Programs Have Yet to Provide for Pre-diabetes and UDM 135
The Hypotheses: Alternative Model of Cardiovascular Risk Assessment in Pre-diabetes and UDM Plus Strategy for Early/Improve... 135
Strategy for Early and Improved Identification of Pre-diabetes 135
Alternative Model for Improved Cardiovascular Risk Assessment in Pre-diabetes 135
Discussion: Significance of Hypothesis 137
Issue Being Discriminated 137
Addition to Knowledge 137
Adoptability: Agenda for Corrections of Omission-in-Practice 138
Relevance: Potential Implications 140
Conclusion 141
Acknowledgment 142
References 142
10 Pre-Diabetes, Cardiovascular Risk Factors, Arterial Stiffness—ADMA 146
Introduction 146
Hyperglycemia and Atherosclerosis 148
Atherosclerosis and Arterial Stiffness 149
Molecular Mechanisms of Arterial Stiffness 149
Cellular Component of Arterial Stiffening 150
ADMA, Pre-Diabetes, and CVD 151
Conclusion 151
References 151
2 Nutrition and Food to Modulate Pre-Diabetes and Resulting Cardiac Disease 158
2A Mechanisms of pre-diabetes and diabetes modulation of cardiac tissues 160
11 Effect of Fiber and Low Glycemic Load Diet on Blood Glucose Profile and Cardiovascular Risk Factors in Diabetes and Poor... 160
Introduction 160
Glycated Hemoglobin 161
GI and GL of Carbohydrates 162
Effect of Fiber on Postprandial Blood Glucose and Diabetes 162
Effect of DF on Insulin Sensitivity 164
Effect of DF on Colonic Fermentation and Gut Bacteria 164
Effect of Low GI, GL, and Fiber in Diet on Glucose Control in GDM 165
Effect of Low GL Diet on HbA1c in Poorly Controlled Diabetes Patients 166
Effect of Low GL Diet on Changes in Cardiovascular Risk Factors in Poorly Controlled Diabetic Patients 167
References 169
12 Glucose Uptake and Its Consequence on Cardiomyocyte Function 174
Introduction 174
Cardiac Metabolism Under Physiological Conditions 174
Modification of Metabolism in the Diabetic Heart 176
Modification of Cardiac Function in the Diabetic Heart 177
Targeting Glucose Utilization and Insulin Response in the Diabetic Cardiomyocyte 177
Glucotoxicity: The Dark Side of Glucose 178
Conclusion 179
Funding 179
References 179
13 Hypertension and Dyslipidemia in Patients with Pre-Diabetes: Dietary and Other Therapies 184
Introduction 184
Dyslipidemia in Pre-Diabetes: Mechanisms and Clinical Characteristics 185
Clinical Significance of Dyslipidemia in Pre-Diabetes 186
Targets of Lipid-Lowering Interventions in Pre-Diabetic Subjects 187
Therapeutic Options 188
Lifestyle Modification 188
Antidiabetic Agents 189
Lipid-Lowering Agents 189
Statins 189
Fibrates 190
Drugs Inhibiting Intestinal Cholesterol Absorption 190
Omega-3 Fatty Acids 191
The Role of RAAS in BP and Glucose Metabolism 191
Angiotensin II 191
Oxidative Stress 191
Insulin Signaling 192
Inflammation 192
Fibrinolytic Balance 192
Aldosterone 192
Hypokalemia 193
Effects of Aldosterone in Adipose Tissue and Skeletal Muscle 193
Effects of Insulin on Aldosterone Production 193
Effects of Antihypertensive Drugs Other Than Those Acting on RAAS on Glucose Metabolism 193
Thiazide Diuretics 193
ß-Blockers 193
Calcium Channel Blockers 194
Other Antihypertensive Drugs 194
Development of New-Onset T2DM with Different Antihypertensive Drug Classes 194
Diuretics and/or ß-Blockers Versus Placebo 194
Thiazide Diuretics Versus ß-Blockers 194
RAAS Inhibitors Versus Placebo 194
CCBs Versus Diuretics and/or ß-Blockers 195
CCB/HCTZ Versus HCTZ 195
RAAS Inhibitors Versus Diuretics and/or ß-Blockers 195
Studies Assessing DM Incidence with RAAS Inhibitors, CCBs, Diuretics, and/or ß-Blockers or Other Drugs (in Various Combinat... 196
New-Onset T2DM and Cardiovascular Outcomes 197
Antihypertensive Treatment in Patients with Pre-Diabetes 198
Lifestyle Modification 198
Pharmacotherapy 198
ARBs with Peroxisome Proliferator-Activated Receptor-. Properties 199
Conclusions 200
References 200
14 Animal Models of Diabetic Cardiomyopathy 208
Introduction 208
Diabetic Cardiomyopathy and Its Pathogenesis 208
Models of Diabetic Cardiomyopathy 209
Minimal Criteria for Models of Diabetic Cardiomyopathy 209
Validation Criteria for Models of Diabetic Cardiomyopathy 209
The Streptozotocin Model 210
OVE26 Mouse Model 211
Zucker Fatty Rat and Zucker Diabetic Fatty Rat Models 211
Models of Lipotoxicity 211
Model of Fibrosis 212
Models of Insulin Resistance and Obesity 212
ob/ob Mouse Model 212
db/db Mouse Model 212
Some Additional Genetic Models with Defective Insulin Signaling 213
Dominant Negative PI3K 213
Heart and Skeletal Muscle PDK1 KO 213
Cardiomyocyte GLUT4-KO 213
UCP-DTA Mouse 213
Goto-Kakizaki Rat 213
Additional Models of Diabetic Cardiomyopathy 213
Conclusion 213
References 214
15 4-Hydroxyisoleucine: A Potential Antidiabetic Agent from Trigonella foenum-graecum 218
Introduction 218
4-Hydroxyisoleucine 219
Extraction and Isolation of 4-Hydroxyisoleucine 219
Standardization of 4-Hydroxyisoleucine 220
Antidiabetic Activity of 4-OH-Ile 220
Mechanism of Action at the Molecular Level 222
Metabolism of 4-OH-Ile 222
Other Activities 223
Conclusion 223
References 224
16 mHealth Technologies in Pre-Diabetes and Diabetes Care 226
Introduction 226
The Diabetes Epidemic 226
The Shifting Focus of Healthcare 226
Convergence of Mobile Technology and Healthcare 227
mHealth for Pre-Diabetes and Diabetes 228
Types of Diabetes-Related Technologies 228
Traditional Diagnostics and Therapeutics 229
Handheld Blood Glucose Meters 229
Continuous Glucose Monitoring 229
Insulin Pumps and Artificial Pancreas Systems 231
Modern Innovations Using mHealth 232
Diet and Exercise Tracking 232
Messaging Systems for Patient Education and Coaching 233
Adaptations to the Blood Glucose Meter 233
Modern DMSs 234
Future Approaches for Diabetes Care 235
Challenges Associated with Adoption of mHealth Diabetes Care Solutions 236
Limited Data to Support Effectiveness 236
Cost-Effectiveness, Affordability, and Reimbursement 236
FDA Regulation 237
Integration into Diabetes Care Environments 238
Conclusion 238
References 238
17 Fruit and Glycemic Control in Type 2 Diabetes 242
Fruit and Glycemic Control 243
Acute Studies: Postprandial Blood Glucose 243
Potential Problems Using GI Studies 243
Long-Term Studies: HbA1c 244
How Many Pieces of Fruit at a Time? 246
How Much Fruit a Day? 246
Mechanisms Involved in the Effects of Fruit on Glycemic Control 246
Potential Negative Effects of Fruit and Fructose 246
Beneficial Effects of Fruit on Diseases 247
Conclusions 247
References 247
18 Antihyperglycemic Activity of Bioactive Compounds from Soybeans 252
Introduction 252
Botanical Description 252
Antihyperglycemic Bioactive Compounds from Soya 252
Summary Points 253
References 254
19 Myoinositol Supplementation on Insulin Resistance in Gestational Diabetes 256
Myoinositol 256
Insulin Resistance and Gestational Diabetes Mellitus 257
Myoinositol in Clinical Practice 258
References 259
20 The Tibetan Herbal Preparation Padma 28 (Padma Basic) in the Treatment and Prevention of Diabetic Complications and Athe... 262
Network Etiology of Complex Diseases: The Example of Diabetes-Associated Diseases 262
Padma 28 in Atherogenesis as an Example of the Multi-target Mode of Action 262
Pathogenesis of Diabetes-Associated Diseases 263
Oxidative Stress and Antioxidative Mechanisms of Padma 28 264
Advanced Glycation End-products 265
Chronic Low-Level Inflammation and Anti-inflammatory Mechanisms of Padma 28 266
Outlook and Conclusions 267
References 267
II. Diabetes 268
3 Diabetes in Development and Pathology of Cardiovascular Disease 270
3A Role of foods in cardiovascular problems promoted by diabetes 272
21 Cardiovascular Biomarker Assessment Across Glycemic Status 272
A Review of Macrovascular Results in Past Major Clinical Trials Involving Glucose Control 273
University Group Diabetes Program 273
DCCT, EDIC, and UKPDS 273
ACCORD and ADVANCE 273
Veterans Affairs Diabetes Trial 275
Summary: Insufficient Understanding of Macrovascular Risk 275
Overview of Current Clinical Biomarkers for Cardiovascular Risk 276
C-Reactive Protein 276
CRP and Diabetes 278
Current Clinical Considerations of CRP 279
Myeloperoxidase 279
Cardiac Troponins 281
cTns as a Prognostic Tool 282
Diabetes and cTns 283
B-Type Natriuretic Peptide 283
BNP in the Prevention of Subclinical CVD 284
Albuminuria 285
Perspectives on Biomarkers for Cardiovascular Risk 286
Multi-Biomarker Profiles for Prognostics 286
Conclusion 287
References 288
22 The Transcultural Diabetes Nutrition Algorithm: From Concept to Implementation 296
Nutritional Medicine and Comprehensive Diabetes Care 296
White Papers on Nutrition and T2D 297
Clinical Algorithms as Practice Management Tools 297
The Transculturalization Process 298
The Transcultural Diabetes Nutrition Algorithm Concept and Development 300
Translating the tDNA Development Process into Results 300
tDNA Content Validation 303
tDNA Clinical Validation Plans 305
Conclusions 305
References 306
23 Microcirculation: A Key Effector in Insulin Resistance 308
Introduction 308
Background 308
How to Measure Microcirculation 309
Microcirculation: Structural and Functional Specificities 309
Structures 309
Glycocalyx 310
Arteriolar Vasomotion 310
Insulin as a Vasoactive Hormone 311
Insulin and Microflow 311
Physiology Versus Pharmacology 313
Insulin Transendothelial Transport 313
Blood Flow and Glucose Metabolism 314
Limitations and Technical Biases 314
Regional Physiological Differences 314
Species, Gender, Age, and Ethnicity 314
Protocol/Techniques 314
Animals/Humans 315
Microcirculation in Pre-Diabetes 315
Conclusion 318
References 318
24 Glucose Intake and Utilization in Pre-Diabetes and Diabetes: Tomato and Diabetes 328
Introduction 328
Diabetes 328
Incidence and Prevalence 328
Categories of Diabetes and Glucose Regulation 328
Type 1 Diabetes 328
Symptoms of Type 1 Diabetes 329
High Blood Sugar 329
Low Blood Sugar 329
Type 2 Diabetes 329
Symptoms of Type 2 Diabetes 329
Categories of Increased Risk for Diabetes 329
Criteria for the Diagnosis of Diabetes 329
Tomato 330
Carotenoids 330
Chemistry and Dietary Sources 331
Lycopene 331
Dietary Sources of Lycopene 331
The Role of Lycopene in Human Health 331
Tomato and Diabetes 331
Tomato and Antioxidant Property 331
Tomato and Lipid Profiles 332
Tomato and Hypertension 333
Conclusion 336
References 337
25 Optimal Carbohydrate and Nutrient Intake for Japanese Elderly Patients with Type 2 Diabetes 342
Introduction 342
Diabetes in Older Adults 342
Characteristics of Asian Diabetic Patients 343
MNT in Diabetes Management 343
Dietary Intake in Japanese Elderly Diabetic Patients 344
Obesity and Dietary Intake in Japanese Elderly Diabetic Patients 347
Optimal Carbohydrate Intake in Japanese Elderly Diabetic Patients 347
The Relationship Between Vegetable Intake and Diabetes Control 349
References 350
26 Mediterranean Diet for Prevention of Cardiovascular Disease and Type 2 Diabetes 354
Introduction 354
The Med Diet 355
Measuring Adherence to a Med Diet: the Med Diet Score 355
Epidemiologic Studies 357
Epidemiologic Evidence Linking Adherence to a Med Diet and CVD Risk 357
Epidemiologic Evidence Linking Adherence to a Med Diet with T2DM Risk 358
Summary of Epidemiologic Evidence Linking Adherence to a Med Diet with Development of CVD or T2DM 358
Intervention Studies 358
Effect of a Med Diet on CVD Risk 358
Effect of a Med Diet on T2DM Risk 359
Effect of a Med Diet on Intermediate End-Points for CVD and T2DM: Potential Mechanisms of Action 359
Effect of a Med Diet on Blood Lipid Levels and Blood Pressure 359
Effect of a Med Diet on Inflammatory Markers 360
Effect of a Med Diet on Metabolic Syndrome, Endothelial Function, and IR 360
Effect of a Med Diet on Body Weight 360
Summary of Intervention Study Evidence Examining a Med Diet for Prevention of CVD and T2DM 361
The Protective Effect of Individual Med Diet Food Components 361
Olive Oil 361
Whole Grains 361
Fruit and Vegetables 362
Nuts 362
Oily Fish 362
Alcohol 362
Conclusion 363
References 363
27 The Role of Nutrition and Supplementation in Dialysis Patient Health 368
Chronic Kidney Disease and Dialysis Treatment 368
Dietary Recommendations for Dialysis Patients 369
Carbohydrates 369
Lipids 369
Protein 369
Phosphorus 370
Potassium 370
Sodium 370
Supplements in Dialysis Patients 370
Omega-3 370
Conjugated Linoleic Acid 371
Vitamin E (Alpha-Tocopherol) 371
Vitamin D 371
Polyphenols 371
Creatine 372
L-Carnitine 372
Probiotics and Prebiotics 372
References 373
28 Bioactive Compounds Increase Incretins with Beneficial Effects on Diabetes 376
Introduction 376
Mode of Action 376
Incretin Mimetic and Incretin Enhancer 376
GLP-1 Receptor Agonists 377
DPP-4 Inhibitors 377
Sitagliptin 378
Vildagliptin 378
Berberine 379
Lupeol 379
Conclusion 380
References 380
3B Exercise diabetes and cardiovascular disease 382
29 Exercise and Diet Improve Cardiometabolic Risk in Overweight and Obese Individuals Without Weight Loss 382
Introduction 382
Reduction in T2D Risk 383
Glucose Metabolism and Insulin Action 384
Blood Pressure 385
Lipids and Lipoproteins 386
Endothelial Function 387
Inflammation 388
Skeletal Muscle Adaptations with Exercise Training 389
Summary and Conclusions 389
References 390
3C Nutrition and food to modulate diabetes: Heart and vascular health 396
30 Protein in the Treatment of Type 2 Diabetes Mellitus 396
Introduction 396
HP Diets and Weight Loss 396
HP Diets and Blood Lipids 397
HP Diets and Glycemic Control in T2DM 397
HP Diets and Blood Pressure 397
Protein and Satiety 398
Studies Using VAS 398
Studies Using Preloads or Meals 398
Studies Using Measures of Hormonal Change 398
Protein and Energy Expenditure 399
Effect of Protein on Glycemic Response 399
Potential Risks of HP Diet 399
Renal Function 400
Bone Loss 400
Cancer 400
Summary 400
References 401
31 Nutritional Support in Hospitalized Patients with Diabetes Mellitus 404
List of Abbreviations 404
Introduction 404
General Nutrition in Diabetes 405
Nutrition in Hospitalized Patients 405
EN in Diabetic Patients 406
Diabetes Medication Administration with EN 407
PN in Diabetes 408
PN Macronutrient Effect on Hyperglycemia 409
Micronutrient Adjunct Therapy in PN 409
Conclusion 410
References 410
32 Amino Acids Supplementation as Nutritional Therapy Strategy in Diabetes Mellitus 414
Amino Acids Supplementation as a Rational Approach to Treatment of Pre-Diabetes and Diabetes 414
ß-Cell Nutrient Metabolism Is Central to the Insulin Secretion 415
Amino Acids as Secretagogues 415
Arginine 416
Glutamine 416
Branched Chain Amino Acids 417
Other Amino Acids 418
Concluding Remarks on Secretagogue Effects of Amino Acids 418
Amino Acids Supplementation to Maintain Muscle Mass in T2DM 419
Exercise-Induced Improvement of the Positive Effects of Amino Acids in Pre-Diabetes and T2DM: An Open Issue 421
Clusters of Amino Acids and Risk of Diabetes: An Intriguing Issue 421
Amino Acids and Mitochondrial Biogenesis in Diabetes 422
Concluding Remarks 422
References 422
Index 430
List of Contributors
John M. Abbamonte, MA, Department of Psychology, Rutgers University, Camden, NJ, USA
Ahmad Afaghi, PhD, MS, MSPH, Qazvin University of Medical Science, School of Medicine, Qazvin, Iran
Olubukola Ajala, MD, MRCP, Department of Diabetes and Endocrinology, Western Sussex Hospitals NHS Trust, Worthing, United Kingdom
Renata Moneda Alberto dos Santos, BSc, Clinical Hospital of Ribeirão Preto Medical School and Ribeirão Preto Medical School, University of São Paulo, Brazil
Siddhartha S. Angadi, PhD, Healthy Lifestyles Research Center, School of Nutrition and Health Promotion, Arizona State University, Phoenix, AZ, USA
Gol-Naz Arjomand, MSc, Department of Nutrition and Diet Therapy, School of Nutrition and Dietary, Tehran University of Medical Sciences, Tehran, Iran
Kristin J. August, PhD, Department of Psychology, Rutgers University, Camden, NJ, USA
Sachin L. Badole, PhD, Department of Pharmacology, PES’s Modern College of Pharmacy, Sector 21, Yamuna Nagar, Nigadi, Pune, India
Christophe Beauloye, MD, PhD, Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Brussels, Belgium
Luc Bertrand, PhD, Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Brussels, Belgium
Guenther Boden, MD, Division of Endocrinology, Diabetes, Metabolism and the Clinical Research Center, Temple University School of Medicine, Philadelphia, PA, USA
F. Boubred, MD-PhD, Department of Neonatology, University Hospital, Marseille, France
M. Jason Brooke, MSE, JD, Vasoptic Medical Inc., Columbia, MD, USA
José Abrão Cardeal da Costa, MD, PhD, Clinical Hospital of Ribeirão Preto Medical School and Ribeirão Preto Medical School, University of São Paulo, Brazil
Zijian Chen, MD, Beth Israel Medical Center, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine, Mt. Sinai, Israel
Allan Stubbe Christensen, MHSc, RD, Department of Nutrition, Regional Hospital West Jutland, Denmark
Christian Loepfe, MSc, Regulatory and Medical Scientific Affairs, Padma Inc., Hinwil, Switzerland
Francesco Corrado, PhD, MD, Department of Obstetrics and Gynecology, University of Messina, Italy
Giuseppe D’Antona, MD, PhD, Department of Molecular Medicine and Laboratory for Motor Activities in Rare Diseases (Lusammr), University of Pavia, Pavia, Italy
Amy A. Devitt, PhD, Abbott Nutrition Research and Development, Columbus, OH, USA
Patrick English, MD, FRCP, Department of Diabetes and Endocrinology, Plymouth Hospitals NHS Trust, Crownhill, Plymouth, United Kingdom
M. Florentin, MD, Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
Glenn A. Gaesser, PhD, Healthy Lifestyles Research Center, School of Nutrition and Health Promotion, Arizona State University, Phoenix, AZ, USA
Søren Gregersen, MD, PhD, Department of Endocrinology and Metabolism, Aarhus University Hospital, Denmark
Refaat A. Hegazi, MD, Abbott Nutrition Research and Development, Columbus, OH, USA
Sandrine Horman, PhD, Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Brussels, Belgium
Syed Khalid Imam, FCPS, Al-Mouwasat Hospital, Jubail Industrial City, KSA
Ganesh B. Jangam, Mpharm, Department of Pharmacology, PES’s Modern College of Pharmacy, Sector 21, Yamuna Nagar, Nigadi, Pune, India
Catherine Jarrett, MS, RD, Healthy Lifestyles Research Center, School of Nutrition and Health Promotion, Arizona State University, Phoenix, AZ, USA
Chiemi Kamada, MS, Training Department of Administrative Dietitians, Faculty of Human Life Science, Shikoku University, Furakawa, Ojin-cho, Tokushima-shi, Japan
Caitlin S. Kelly, MA, Department of Psychology, Rutgers University, Camden, NJ, USA
Arash Kordi, MD, Azad Islamic University, School of Medicine, Tehran, Iran
Jeremy Krebs, MD, Centre for Endocrine, Diabetes and Research, Capital and Coast District Health Board, Wellington South, New Zealand
Daniel Y. Li, BSc, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
Fabíola Pansani Maniglia, MSc, Clinical Hospital of Ribeirão Preto Medical School and Ribeirão Preto Medical School, University of São Paulo, Brazil
Maria Lisa Marcon, PgDip, Metabolic and Nutrition Unit, Department of Medicine, Local Health Authority (ULSS 9), Treviso, Veneto, Italy
Claire T. McEvoy, RD, PhD, Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland
Jeffrey I. Mechanick, MD, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Dean J. Mikami, MD, Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
D. Mitanchez, MD-PhD, Division of Neonatology, Department of Perinatology, Armand Trousseau Hospital, 75012 Paris & Sorbonne Universités UPMC University Paris 06, Paris, France
Bradley J. Needleman, MD, Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
Laura Nollino, MD, Metabolic and Nutrition Unit, Department of Medicine, Local Health Authority (ULSS 9), Treviso, Veneto, Italy
Sabrena F. Noria, MD, PhD, Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
Ezekiel Uba Nwose, BSc, MSc, PhD
School of Community Health, Charles Sturt University, Orange, NSW, Australia
School of Public & Community Health, Novena University, Ogume DTS, Nigeria
Agostino Paccagnella, MD, Metabolic and Nutrition Unit, Department of Medicine, Local Health Authority (ULSS 9), Treviso, Veneto, Italy
Athanasia K. Papazafiropoulou, MD, MSc, PhD, Diabetes Center, Tzaneio General Hospital of Piraeus, Piraeus, Greece
Amber Parry-Strong, PhD, Centre for Endocrine, Diabetes and Research, Capital and Coast District Health Board, Wellington South, New Zealand
Kalyani Y. Patil, MTech, Department of Cosmetic Technology, Nikalas Mahila Mahavidhyalaya, Khamla, Nagpur, India
Roberta Pirolo, PharmD, Local Pharmacy Service, Local Health Authority (ULSS 9), Treviso, Veneto, Italy
Jahan Porhomayon, MD, FCCP, FCCM, Department of Anesthesiology, University at Buffalo, Buffalo, NY,...
Erscheint lt. Verlag | 22.11.2014 |
---|---|
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber ► Gesundheit / Leben / Psychologie |
Medizinische Fachgebiete ► Innere Medizin ► Diabetologie | |
Medizinische Fachgebiete ► Innere Medizin ► Endokrinologie | |
Medizinische Fachgebiete ► Innere Medizin ► Kardiologie / Angiologie | |
Studium ► 1. Studienabschnitt (Vorklinik) ► Biochemie / Molekularbiologie | |
Technik ► Lebensmitteltechnologie | |
ISBN-10 | 0-12-800579-3 / 0128005793 |
ISBN-13 | 978-0-12-800579-8 / 9780128005798 |
Haben Sie eine Frage zum Produkt? |
Größe: 17,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 8,6 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich