Advances in Cellular Neurobiology -

Advances in Cellular Neurobiology (eBook)

Volume 5

Sergey Fedoroff (Herausgeber)

eBook Download: PDF | EPUB
2013 | 1. Auflage
394 Seiten
Elsevier Science (Verlag)
978-1-4832-6687-9 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
54,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Cellular Neurobiology
Advances in Cellular Neurobiology, Volume 5 focuses on cellular neurobiology, drawing on some aspects of biochemistry, endocrinology, embryology, morphology, genetics, pharmacology, pathology, and physiology. This book deals with humoral influences on brain development. Organized into three sections encompassing 10 chapters, this volume begins with an overview of the proposed functions for neurohumoral agents, including cell division, neural tube closure, palate formation, myoblast differentiation, and regulation of cell movements. This text then examines how growth factors regulate autonomic nerve development. Other chapters consider the morphology, physiology, and biochemistry of the neuronal cytoskeleton. This book discusses as well the connective tissue components in the normal peripheral nervous system and in two pathological conditions. The final chapter deals with the advantages and preparation of monoclonal antibodies in the identification of neurons. This book is a valuable resource for neurobiologists and researchers. Scientists in all fields of life sciences will also find this book useful.

Front Cover 1
Advances in Cellular Neurobiology 4
Copyright Page 5
Table of Contents 6
CONTRIBUTORS 10
PREFACE 12
CONTENTS OF PREVIOUS VOLUMES 14
Section 1: CELL DIFFERENTIATION AND INTERACTION 20
CHAPTER 1. HUMORAL INFLUENCES ON BRAIN DEVELOPMENT 22
I. Neurotransmitters as Developmental Signals 22
II. Thyroid Hormones and Corticosteroids as Temporal Regulators of Postnatal Neurogenesis 45
III. Hormonal–Humoral Interactions 56
IV. Summary and Conclusions 59
Acknowledgments 60
References 60
CHAPTER 2. GROWTH FACTORS REGULATING AUTONOMIC NERVE DEVELOPMENT 72
I. Introduction 72
II. Regulation of Neuronal Growth: NGF as a Model Factor 78
III. Autonomie Development in Vivo 79
IV. Nerve–Target Interactions 86
V. Characterized Growth Factors 96
VI. Summary and Conclusions 114
Acknowledgments 116
References 117
CHAPTER 3. THE NEURONAL CYTOSKELETON 132
I. Introduction 132
II. Morphology and Cellular Distribution 134
III. Biochemistry 137
IV. Physiology and Function 144
V. Pathology 148
References 149
CHAPTER 4. ELECTROPHYSIOLOGY OF NEUROPIL GLIAL CELLS IN THE CENTRAL NERVOUS SYSTEM OF THE LEECH: A MODEL SYSTEM FOR POTASSIUM HOMEOSTASIS IN THE BRAIN 162
I. Introduction 163
II. Morphology and Identification of Glial Cells in the Leech CNS 167
III. Passive Electrical Properties of the Neuropil Glial Cell Membrane 173
IV. Leech Neuropil Glial Cell Membrane Potential and Its Dependence on the External Potassium and Chloride Concentration 176
V. Ionic Mechanism and Effect of 5-Hydroxytryptamine on Leech NG Cell Membranes 183
VI. Conclusions 190
References 191
CHAPTER 5. THE CONNECTIVE TISSUE MATRIX OF THE VERTEBRATE PERIPHERAL NERVOUS SYSTEM 196
I. Introduction 196
II. Methods of Study 202
III. Proteoglycans of Nerves 212
IV. Distribution of Elastic System Fibers in Nerves 214
V. Identification and Differential Distribution of Collagen in Nerves 216
VI. Collagen of Human Nerves in Two Pathological Models 227
VII. Do Schwann Cells Produce Collagen Type III? 229
VIII. Conclusions 233
Acknowledgments 234
References 234
Section 2: PATHOLOGY 238
CHAPTER 6. GLIAL CELLS IN HUNTINGTON'S CHOREA 240
I. Introduction 240
II. Huntington's Chorea: A Case of Neuronal Death 241
III. Astrogliosis in Huntington's Chorea 243
IV. Oligodendrocytes and Myelin 244
V. Glial–Glial and Glial–Neuronal Relationships 245
VI. Trophic Interactions between Glial Cells and Neurons 246
VII. Reactive Astrocytosis: Pathological Glial–Neuronal and Glial–Glial Interactions 247
VIII. Reactive versus Normal Astrocytes 248
IX. Glial Cell Markers 249
X. Glutamate and Glial Cells 255
XI. Membrane Changes in HC 257
XII. GABA, Glial Cells, and Neurotransmission 257
XIII. Conclusions 258
Acknowledgments 260
References 260
CHAPTER 7. CENTRAL NEURONS IN CULTURE IN THE STUDY OF SPONGIFORM ENCEPHALOPATHIES 270
I. Introduction 270
II. Culture of CNS Cells 272
III. Identification of Cell Subpopulations 274
IV. Autoantibodies against Neurofilaments of Cultured Neurons in Subacute Spongiform Encephalopathies 278
V. Conclusions 285
References 285
Section 3: METHODOLOGIES 288
CHAPTER 8. PREPARATION OF MONOCLONAL ANTIBODIES AND THEIR ADVANTAGES IN IDENTIFYING SPECIFIC NEURONS 290
I. Introduction 290
II. The Leech Nervous System 292
III. Methods 293
IV. Monoclonal Antibodies That Give Rise to Restrictive Neuronal Labeling 298
V. Mapping Antigenically Homologous Neurons across the Entire CNS 304
VI. Fixation Methods Can Differentiate between Monoclonal Antibody Cross-Reactivities 309
VII. Monoclonal Antibodies Cross-React with Select Neuronal and Epithelial Tissue: Biochemical Characterization of Central and Peripheral Antigens 311
VIII. The Expression of Antigens by Embryonic Neurons and Glial Cells 317
IX. Conclusion 321
References 322
CHAPTER 9. FLUORESCENT NEURONAL TRACERS 326
I. Introduction 326
II. Development of the Multiple Retrograde Fluorescent Tracer Technique for Demonstrating Axon Collaterals 328
III. Differential Retrograde Labeling of Different Members of a Neuronal Population by Means of Fluorescent Tracers 346
IV. The Use of Retrograde Fluorescent Tracers in Studying Developmental Changes in Fiber Connections in the Brain 347
V. Anterograde Axonal Transport of Fluorescent Tracers 348
VI. Combination of the Retrograde Tracers with Other Techniques 350
VII. Methods for Using the Fluorescent Tracers Evans Blue (EB), DAPI, Primulin (Pr), DAPI/Primulin Mixture, Propidium Iodide (PI), Granular Blue (GB), True Blue (TB), Fast Blue (FB), Nuclear Yellow (NY), and Diamidino Yellow (DY) 352
Acknowledgments 356
References 356
CHAPTER 10. COMPUTER-ASSISTED RECONSTRUCTION FROM SERIAL ELECTRON MICROGRAPHS: A TOOL FOR THE SYSTEMATIC STUDY OF NEURONAL FORM AND FUNCTION 362
I. Introduction 362
II. When Is Serial Electron Microscopy Appropriate? 364
III. General Problems Associated with Large-Scale Serial EM Reconstruction 368
IV. Systematic Collection and Staining 369
V. Systematic EM Photography 371
VI. Systematic Computer Reconstruction 372
VII. Analytical and Display Software 382
VIII. Future Technical Improvements and Future Applications 388
Acknowledgments 389
References 390
INDEX 394

Growth Factors Regulating Autonomic Nerve Development


Michael D. Coughlin,     Department of Neurosciences, McMaster University, Hamilton, Ontario, Canada

Publisher Summary


During ontogenesis, sympathetic and parasympathetic neurons pass through a common series of developmental stages. The cellular interactions that mold the autonomic neuron from the beginning of its migration out of the neural crest to the mature stage of functional activity are mediated by a number of regulatory molecules or growth factors. This chapter provides an overview of these growth factors regulating autonomic nerve development. Although such factors are normally capable of affecting neurons throughout their life history, there appear to be specific stages of development at which different growth factors assume a primary role. Thus, responsiveness to different growth factors change during ontogeny. Specification of neurotransmitter phenotype is normally associated with the initial migratory phase and the stage of ganglion consolidation. Following ganglion formation, neurons extend processes to their peripheral targets. During this period of neurite extension, neurons survive and grow independently of trophic factors. After the period of normal neuronal death, resulting from competition for target-derived factors, neurons appear to regulate the release or activity of trophic factors from targets, thus maintaining their own territory of innervation by inhibiting ingrowth from neighboring axons.

I Introduction


Every living organism requires for its development a continuous interplay between the information contained in its genetic endowment and the variations it encounters in the environment. Multicellular life forms have evolved complex strategies for controlling their own internal milieu, thus gaining a greater degree of freedom in responding to the vicissitudes of the external environment. The success of such strategies depends on cellular specialization and on coordinated development and maintenance of the various subsystems within the organism. Thus, the development of multicellular organisms requires ongoing communication and interaction among the various cell populations.

Elucidation of the mechanisms underlying that specialization and coordinated interaction is a prime focus of experimental embryology and, in particular, of developmental neurobiology. Any analysis of the recent advances in elucidating the mechanisms which regulate autonomic development or development of the nervous system in general presumes an awareness of the questions asked and the methodologies initiated by the major experimental embryologists of the past century. Such an awareness not only provides the context for understanding current experimentation, but may also suggest techniques and paths of exploration for the study of neuronal development.

A Historical Perspective


Nearly a century ago Ramón y Cajal (1892) proposed a chemotactic theory to explain the effects of targets on growing neurons. The “alluring” or neurotropic substances which he postulated to explain directed nerve growth continue to be a focus of investigation. At about the same time, Hans Spemann initiated a series of experimental studies on factors controlling lens formation in the amphibian larva. These studies on the interaction of optic cup and overlying epidermis contained the beginnings of a general theory of inductive interactions. In a series of transplantation experiments, Spemann and Mangolde (1924) examined the inductive potential of the archenteron roof, which serves as the substratum for the embryonic neural plate. The archenteron roof, which is derived from the blastopore dorsal lip, the “organizer” of the amphibian gastrula, eventually gives rise to the notochord. By using species with different pigmentation as donor and host embryos (i.e., chimeras), he was able to show that dorsal lip implanted under epidermis at an ectopic site in the host embryo induced host tissue to form a secondary head and nervous system. From such experiments arose the general concept of induction in developmental processes. Cells do not, for the most part, self-differentiate. Rather, dissimilar tissues interact through a series of events to cause a specific change leading to specialization or differentiation of the individual cells. Within this process there also occurs the phenomenon of determination, or gradual reduction in the potential specialities or differentiative states which any given line of cells may attain. Although the terms induction, determination, and differentiation may not define clearly discrete events (Wessells, 1968), the general concepts embodied in the terms are still key issues in the study of nerve development. Questions to be examined in the course of this article, such as the control of neuronal survival, the role of microenvironment in determining neuronal properties, the induction of neurite extension and specific enzyme synthesis, and the stability of neurotransmitter phenotype (i.e., differentiative state), are expressions of such concepts.

Evidence that cellular interactions play a role in neuronal development throughout embryonic life has accumulated continually from the beginning of this century. Extensive in vivo experimentation has confirmed that target size influences survival and growth of innervating neurons. In amphibian larvae and avian embryos, ablation or reduction in size of the target area decreases motor and/or sensory neuron numbers and subsequent development, whereas target enlargement increases neuron numbers and enhances development (Shorey, 1909; Detwiler, 1920; Hamburger, 1934; Prestige, 1970; Hollyday and Hamburger, 1976; Hamburger and Oppenheim, 1982). Moreover, the pattern formed by the innervating fibers is often determined by the target (Braus, 1905; Harrison, 1907a; Detwiler, 1919; Attardi and Sperry, 1963; Olson and Malmfors, 1970; Landmesser, 1981).

Although such cellular interactions have been shown to play a critical role in the regulation of development, the underlying mechanisms remain obscure. Use of tissue culture to simplify the systems being studied and to manipulate the variables under controlled conditions has been a powerful means of defining the mechanisms of development. In 1907, Harrison placed a piece of tadpole spinal cord in a medium of clotted lymph on a glass coverslip, sealed it over a depression slide, and demonstrated the outgrowth of nerve fibers from nerve cell bodies. The simplicity and power of this direct observation unequivocally resolved a long-debated controversy concerning the origin of nerve fibers. Moreover, the experiment established the tissue culture technique as a critical tool in biological research. In reporting his observations to the Society for Experimental Biology and Medicine (1907b), Harrison concluded the following:

While at present it seems certain that the mere outgrowth of the fibers is largely independent of external stimuli, it is of course probable that in the body of the embryo there are many influences which guide the moving end and bring about contact with the proper end structure. The method here employed may be of value in analyzing these factors.

Early attempts to detect such factors by searching for selective growth between paired expiants of nerve and target in tissue culture were unsuccessful (Harrison, 1910; Weiss, 1934). Directed nerve outgrowth was ascribed to the interaction of the growing neurite with oriented fibers or lines of stress in the substratum or matrix on which the neurons were growing, thus giving rise to a mechanical theory of contact guidance (Weiss, 1941).

The theory of contact guidance was formulated specifically for neurite outgrowth, but it reflected the general conclusion at the time that...

Erscheint lt. Verlag 22.10.2013
Sprache englisch
Themenwelt Sachbuch/Ratgeber Natur / Technik Naturführer
Naturwissenschaften Biologie
Technik
ISBN-10 1-4832-6687-7 / 1483266877
ISBN-13 978-1-4832-6687-9 / 9781483266879
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 42,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 14,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Über 440 Vogelarten Europas, mehr als 1.600 Abbildungen EXTRA: Mach …

von Volker Dierschke

eBook Download (2024)
Franckh-Kosmos Verlags-GmbH & Co. KG
13,99