Advances in Cellular Neurobiology -

Advances in Cellular Neurobiology (eBook)

Volume 2
eBook Download: PDF | EPUB
2013 | 1. Auflage
530 Seiten
Elsevier Science (Verlag)
978-1-4832-6814-9 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
70,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Cellular Neurobiology
Advances in Cellular Neurobiology, Volume 2 discusses the central nervous system, focusing on the structure and function of the brain and spinal cord at cellular level and higher brain functions such as learning, memory, and intelligence. This book is divided into three main sections- cell differentiation and interaction, aging and pathology, and methodologies. The topics discussed include APUD cells and paraneurons: embryonic origin; trophic and specifying factors directed to neuronal cells; and cellular aspects of human brain tumors (gliomas). The astrocyte in liver disease; radioenzymatic methods for analysis of neurotransmitters; and application of immunofluorescence in studies of cytoskeletal antigens are also deliberated in this text. This publication is intended for neurologists, but is also beneficial to students researching on the topographical anatomy and functional relation of the brain and spinal cord.

Front Cover 1
Advances in Cellular Neurobiology 4
Copyright Page 
5 
Table of Contents 6
List of Contributors 10
Preface 12
Contents of Volume 1 14
Section 1: CELL DIFFERENTIATION AND INTERACTION 18
CHAPTER 1. APUD CELLS AND PARANEURONS: EMBRYONIC ORIGIN 20
I. APUD and Paraneuron Concepts 21
II. Embryonic Origin of APUD Cells and Paraneurons 24
References 42
CHAPTER 2. THE ORIGIN AND NATURE OF MICROGLIA 50
I. Microglia as a Separate Cellular Entity 51
II. Ameboid Microglia (Ameboid Cells) 59
III. Hypotheses on the Origins of Microglia 68
IV. Recent Experimental Data 75
V. Reappraisal of the Hypotheses on the Origins of Microglia 83
VI. Microglia and Neural Macrophages 86
VII. Conclusions 88
Acknowledgments 91
References 91
CHAPTER 3. PHYSIOLOGY AND PHARMACOLOGY OF MAMMALIAN CENTRAL NEURONS IN CELL CULTURE 100
I. Introduction 101
II. Methods of Preparing and Studying Cell Cultures 101
III. Morphology and Physiology of Cultured Neurons 107
IV. Amino Acid Pharmacology of Cultured Spinal Neurons 114
V. Pharmacology of Clinically Important Drugs on Cultured Spinal Neurons 122
VI. Summary and Conclusions 127
References 128
CHAPTER 4. TROPHIC AND SPECIFYING FACTORS DIRECTED TO NEURONAL CELLS 132
I. Introduction 132
II. Nerve Growth Factor 139
III. Other Factors Directed to Neurons 153
IV. Conclusions and Projections 164
Acknowledgments 170
References 170
Section 2: AGING AND PATHOLOGY 182
CHAPTER 5. CELLULAR ASPECTS OF HUMAN BRAIN TUMORS (GLIOMAS) 184
I. Cellular Components of Gliomas 184
II. Cell, Tissue, and Organ Cultures 195
III. Clonogenicity 200
IV. Cellular Kinetics 204
V. Mitosis and Chromosome Analysis 211
VI. Flow Cytometry and DNA Distribution 213
Acknowledgments 216
References 216
CHAPTER 6. LIPOFUSCIN AND ITS RELATION TO AGING 222
I. Introduction 223
II. Morphology 224
III. Staining Reactions 227
IV. Autofluorescence 228
V. Lipofuscin and Neuromelanin 229
VI. Ceroid 231
VII. Biochemistry 232
VIII. Distribution 233
IX. Lipofuscin in Specific Organs 234
X. Lipofuscin in Disease 240
XI. Genesis of Lipofuscin 245
XII. The Fate of Lipofuscin 248
XIII. Functional Significance of Lipofuscin 251
XIV. Summary and Conclusions 254
References 255
CHAPTER 7. THE REACTIVE ASTROCYTE 266
I. Introduction 266
II. Ultrastructure of Astrocytes 267
III. Response of Astrocytes To Dorsal Root Injuries 276
IV. Cellular Response to CNS Injury 282
V. Phagocytic Role of Neuroglia in Removal of Myelin 294
VI. Astrocytic Proliferation in CNS Injury 299
VII. Glycogen Accumulation in Reactive Astrocytes 300
VIII. Enzyme Histochemistry of Reactive Astrocytes 303
IX. Astrocytic Reactions in Pathological Conditions 305
X. Astrocytic Response and Aging 305
XI. Conclusions 307
Acknowledgments 308
References 309
CHAPTER 8. THE ASTROCYTE IN LIVER DISEASE 320
I. Introduction 321
II. Glial Functions 321
III. Etiology and Pathogenesis 325
IV. Astrocyte Alterations in Hepatic Encephalopathy 336
V. Summary and Conclusions 354
Acknowledgments 354
References 355
Section 3: METHODOLOGIES 370
CHAPTER 9. RADIOENZYMATIC METHODS FOR ANALYSIS OF NEUROTRANSMITTERS 372
I. Introduction 372
II. Norepinephrine, Epinephrine, and Dopamine 373
III. Serotonin 386
IV. Acetylcholine 388
V. Octopamine 395
VI. Application of Radioenzymatic Assays to Neurotransmitter Analysis in Cells 398
VII. Advantages and Limitations 401
VIII. Conclusion 403
References 404
CHAPTER 10. APPLICATION OF IMMUNOFLUORESCENCE IN STUDIES OF CYTOSKELETAL ANTIGENS 410
I. Introduction 411
II. Methods 413
III. Application of the Immunofluorescent Technique to Cytoskeletal Fiber Systems in Cells from Nervous Tissues 435
IV. Prospects for the Future 458
Acknowledgments 462
References 462
CHAPTER 11. SEPARATION OF CELL TYPES FROM THE CEREBELLUM AND THEIR PROPERTIES 478
I. Introduction 478
II. Dissociation and Fractionation of Cells 479
III. Properties of the Isolated Cells and Cell Fractions 486
IV. Culture of Cerebellar Cells 495
V. Discussion and Conclusions 499
Acknowledgments 502
References 502
CHAPTER 12. PINEAL CELLS IN MONOLAYER CULTURE 508
I. Introduction 508
II. Methods 512
III. Results 514
IV. Discussion 522
Acknowledgments 525
References 525
SUBJECT INDEX 528

The Origin and Nature of Microglia


Eng-Ang Ling,     Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore, Republic of Singapore

Publisher Summary


This chapter reviews the origin and nature of miroglia. Microglial cells constitute a normal distinct cellular entity in the central nervous system and are identifiable by the silver carbonate staining method. In the past, the metamorphosis of microglia into phagocytic brain macrophages under pathological conditions or experimental lesions had received wide support from investigators. Although ameboid microglial cells display diverse morphological forms, they have many common features of monocytes and macrophages, both ultrastructurally and cytochemically. Experiments using 3H’thymidine autoradiography and carbon particles as an intracellular marker have demonstrated unequivocally that circulating monocytes give rise to ameboid microglial cells that evolve to become microglia; however, not all the ameboid microglial cells transform into microglia. The mechanism wherein the ameboid microglial cells become microglia is not clear, although it seems to coincide with the development of the corpus callosum, particularly when the axons become compact because of myelination. In neural injuries such as retrograde and Wallerian degeneration, microglial cells are reactivated to become macrophages, which would assume their phagocytic activity.

I Microglia as a Separate Cellular Entity


The first description of microglia dates back to the early part of this century, when Rio-Hortega (1919, 1932), by using a weak silver carbonate stain, succeeded in distinguishing two types of Cajal’s (quoted by Rio-Hortega, 1932) “third element” or “adendritic corpuscle,” thought to be of mesenchymal nature, in the central nervous system. Rio-Hortega noted that the two types of cells, distinctly different in their morphological and functional characteristics, were of diverse origin; he named the two types oligodendroglia and microglia. According to his original description, the oligodendroglial cell was of ectodermal (ependymal) origin, had few prolongations, and lacked phagocytic capacity, whereas the microglial cell was of mesodermal (meningeal) origin, had free and profusely branched prolongations, was endowed with migratory capacity, and showed macrophagic activities. Since then, the existence of the microglial cell as a distinct entity has been widely accepted by many authors, even before the advent of electron microscopes (Penfield, 1925, 1932; Carmichael, 1929; Dunning and Furth, 1935; Kershman, 1939; Field, 1955). In fact, the descriptions of the morphology of microglia in modern textbooks of histology and neuroanatomy have been based on Rio-Hortega’s classical observations. Thus, in sections stained with the weak silver carbonate method, microglial cells are recognized as small elements with a fusiform or stellate cell body (Fig. 1); arising from this are two or more cytoplasmic processes that in turn give rise to a variable number of secondary branches. The fullest account on microglia was by Rio-Hortega (1932), who gave a thorough review of the structure, nature, and behavior of this cell type. He further added that these cells might represent the components of the reticuloendothelial system in the central nervous system and that they were probably involved in the elimination of substances resulting from metabolism or neuronal breakdown.

Fig. 1 Evenly scattered microglial cells in the corpus callosum (A) and cerebral cortex (B) of a 22-day-old rat: Some cells are bipolar and others, multipolar. The cytoplasmic prolongations of the cells bear secondary or even tertiary branches. Silver carbonate stain. × 420.

A Identification by Electron Microscopy


Early electron microsopic studies have provided rather contradictory views as to the identity and ultrastructural morphology of microglia (Luse, 1956; Farquhar and Hartman, 1957; De Robertis and Gershenfeld, 1961; Bodian, 1964; Herndon, 1964; Yasuzumi et al., 1964). Most of these articles did not give a correct view of microglia and, in fact, created confusion. The only paper with acceptable photographs was that of Blinzinger and Hager (1962). Because most observations were poorly illustrated, some authors doubted or frankly denied the existence of microglia (Malmfors, 1963; Kruger and Maxwell, 1966; Eager and Eager, 1966; Wendell-Smith et al., 1966; King, 1968). A breakthrough in this controversial issue was provided by the work of Mori and Leblond (1969), who first adapted the weak silver carbonate method of Rio-Hortega (1919) for electron microscopy. It was reasoned that the silver deposited on the impregnated microglia should make them opaque to the electron beam. Indeed, in spite of the poor preservation of the tissue, the dense granules of silver precipitate were clearly seen over the stained cells. By correlating this method with routine electron microscopy, the identification of microglia was clarified and characterized (Mori and Leblond, 1969). Another approach was that of Blakemore (1969), who obviated the confusion between oligodendrocytes and microglia by examining such areas as periependymal zones, where oligodendrocytes were absent. Microglia can be now recognized readily in routine electron microscopy (Ling et al., 1973; Phillips, 1973; Ling and Ahmed, 1974; Blakemore, 1975; Boya, 1975; Peters et al., 1976; Fulcrand and Privat, 1977). Their consistent appearance in normal material under different fixation conditions precludes the possibility that they are fixation artifacts. The cells are characterized by a small flattened or angulated nucleus containing large dense chromatin masses that show a high contrast with the nucleoplasm (Fig. 2). The scanty cytoplasm often accumulates at one side; it is endowed with a few electron dense bodies, presumably of lysosomal nature. The Golgi apparatus is characterized by flattened and delicate saccules. The rough endoplasmic reticulum is in single isolated profiles that often course through the periphery of the cell. In addition, a centriole and microtubules may be present (Ling et al., 1973; Privat, 1975).

Fig. 2 A microglial cell from the corpus callosum of a 22-day-old rat. The cell lies between closely packed axons, of which most are unmyelinated. The elongated and flattened nucleus displays margination of dense chromatin masses. The cytoplasm that accumulates at one pole shows numerous dense bodies (db) and Golgi apparatus with characteristic thin saccules (G). The rough endoplasmic reticulum is in isolated profiles. Bar = 1 μm. (From Ling, 1976a.)

A challenge to these data came from the work of Fujita and his colleague (Fujita, 1965; Kitamura, 1973; Fujita and Kitamura, 1975, 1976), who refuted the existence of microglia as a separate cellular entity. They claimed, rather, that Rio-Hortega’s microglial cells were the products of inadequate fixation and further concluded that these cells were merely electron dense neurons, which they called “ebony neurons.” More recently,...

Erscheint lt. Verlag 22.10.2013
Sprache englisch
Themenwelt Sachbuch/Ratgeber Natur / Technik Naturführer
Naturwissenschaften Biologie Zoologie
Technik
ISBN-10 1-4832-6814-4 / 1483268144
ISBN-13 978-1-4832-6814-9 / 9781483268149
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 81,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 15,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Über 440 Vogelarten Europas, mehr als 1.600 Abbildungen EXTRA: Mach …

von Volker Dierschke

eBook Download (2024)
Franckh-Kosmos Verlags-GmbH & Co. KG
13,99