Local Multipliers of C*-Algebras - Pere Ara, Martin Mathieu

Local Multipliers of C*-Algebras

Buch | Softcover
319 Seiten
2012 | Softcover reprint of the original 1st ed. 2003
Springer London Ltd (Verlag)
978-1-4471-1068-2 (ISBN)
106,99 inkl. MwSt
Many problems in operator theory lead to the consideration ofoperator equa­ tions, either directly or via some reformulation. More often than not, how­ ever, the underlying space is too 'small' to contain solutions of these equa­ tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C*-algebra A that turns out to be small in this sense tradition­ ally is enlarged to its (universal) enveloping von Neumann algebra A". This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A" is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C*-algebra A becomes inner in A", though 8 may not be inner in A. The transition from A to A" however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A". In such a situation, A is typically enlarged by its multiplier algebra M(A).

1. Prerequisites.- 2. The Symmetric Algebra of Quotients and its Bounded Analogue.- 3. The Centre of the Local Multiplier Algebra.- 4. Automorphisms and Derivations.- 5. Elementary Operators and Completely Bounded Mappings.- 6. Lie Mappings and Related Operators.- References.

Reihe/Serie Springer Monographs in Mathematics
Zusatzinfo XII, 319 p.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Sachbuch/Ratgeber Natur / Technik Garten
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
ISBN-10 1-4471-1068-4 / 1447110684
ISBN-13 978-1-4471-1068-2 / 9781447110682
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Obst- und Ziergehölze, Stauden, Kübel- und Zimmerpflanzen richtig …

von Hansjörg Haas

Buch | Hardcover (2023)
Gräfe und Unzer (Verlag)
34,00
Fachrichtung Baumschule

von Heinrich Beltz; Hans Heinrich Möller

Buch | Softcover (2024)
Cadmos Verlag
24,53