Introduction to Sieve Methods and Their Applications (eBook)
Cambridge University Press (Verlag)
978-0-511-13149-3 (ISBN)
Sieve theory has a rich and romantic history. The ancient question of whether there exist infinitely many twin primes (primes p such that p+2 is also prime), and Goldbach's conjecture that every even number can be written as the sum of two prime numbers, have been two of the problems that have inspired the development of the theory. This book provides a motivated introduction to sieve theory. Rather than focus on technical details which can obscure the beauty of the theory, the authors focus on examples and applications, developing the theory in parallel. The text can be used for a senior level undergraduate course or an introductory graduate course in analytic number theory, and non-experts can gain a quick introduction to the techniques of the subject.
Erscheint lt. Verlag | 12.1.2006 |
---|---|
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Technik | |
ISBN-10 | 0-511-13149-6 / 0511131496 |
ISBN-13 | 978-0-511-13149-3 / 9780511131493 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich