Auction Theory -  Vijay Krishna

Auction Theory (eBook)

eBook Download: PDF | EPUB
2009 | 2. Auflage
336 Seiten
Elsevier Science (Verlag)
978-0-08-092293-5 (ISBN)
62,95 € inkl. MwSt
Systemvoraussetzungen
62,66 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Vijay Krishna's 2e of Auction Theory improves upon his 2002 bestseller with a new chapter on package and position auctions as well as end-of-chapter questions and chapter notes. Complete proofs and new material about collusion complement Krishna's ability to reveal the basic facts of each theory in a style that is clear, concise, and easy to follow. With the addition of a solutions manual and other teaching aids, the 2e continues to serve as the doorway to relevant theory for most students doing empirical work on auctions.




  • Focuses on key auction types and serves as the doorway to relevant theory for those doing empirical work on auctions

  • New chapter on combinatorial auctions and new analyses of theory-informed applications ,

  • New LaTex Beamer slides, chapter-ending exercises, problems of varying difficulties, and a solutions manual support and reinforce key points

Auction Theory, Second Edition improves upon his 2002 bestseller with a new chapter on package and position auctions as well as end-of-chapter questions and chapter notes. Complete proofs and new material about collusion complement Krishna's ability to reveal the basic facts of each theory in a style that is clear, concise, and easy to follow. With the addition of a solutions manual and other teaching aids, the 2e continues to serve as the doorway to relevant theory for most students doing empirical work on auctions. Focuses on key auction types and serves as the doorway to relevant theory for those doing empirical work on auctions New chapter on combinatorial auctions and new analyses of theory-informed applications New chapter-ending exercises and problems of varying difficulties support and reinforce key points

Front Cover 1
Title Page 2
Copyright Page 3
Dedication Page 4
Table of Contents 6
Preface 10
Chapter 1. Introduction 14
1.1 Some Common Auction Forms 15
1.2 Valuations 15
1.3 Equivalent Auctions 17
1.4 Revenue versus Efficiency 18
1.5 What Is an Auction? 19
1.6 Outline of Part I 19
Part I: Single-Object Auctions 22
Chapter 2. Private Value Auctions: A First Look 24
2.1 The Symmetric Model 24
2.2 Second-Price Auctions 25
2.3 First-Price Auctions 26
2.4 Revenue Comparison 30
2.5 Reserve Prices 34
Chapter 3. The Revenue Equivalence Principle 40
3.1 Main Result 40
3.2 Some Applications of the Revenue Equivalence Principle 42
3.2.1 Unusual Auctions 42
3.2.2 Uncertain Number of Bidders 45
Chapter 4. Qualifications and Extensions 50
4.1 Risk-Averse Bidders 51
4.2 Budget Constraints 55
4.2.1 Second-Price Auctions 55
4.2.2 First-Price Auctions 57
4.2.3 Revenue Comparison 58
4.3 Asymmetries among Bidders 59
4.3.1 Asymmetric First-Price Auctions with Two Bidders 59
4.3.2 Revenue Comparison 64
4.3.3 Efficiency Comparison 66
4.4 Resale and Efficiency 67
Chapter 5. Mechanism Design 74
5.1 Mechanisms 74
5.1.1 The Revelation Principle 75
5.1.2 Incentive Compatibility 76
5.1.3 Individual Rationality 79
5.2 Optimal Mechanisms 80
5.2.1 Setup 80
5.2.2 Solution 81
5.2.3 Discussion and Interpretation 84
5.2.4 Auctions versus Mechanisms 87
5.3 Efficient Mechanisms 88
5.3.1 The VCG Mechanism 88
5.3.2 Budget Balance 90
5.3.3 An Application to Bilateral Trade 92
Chapter 6. Auctions with Interdependent Values 98
6.1 The Symmetric Model 101
6.2 Second-Price Auctions 102
6.3 English Auctions 104
6.4 First-Price Auctions 107
6.5 Revenue Comparisons 110
6.5.1 English versus Second-Price Auctions 110
6.5.2 Second-Price versus First-Price Auctions 111
6.6 Efficiency 114
Chapter 7. The Revenue Ranking (“Linkage”) Principle 118
7.1 The Main Result 118
7.2 Public Information 121
7.3 An Alternative Linkage Principle 123
Chapter 8. Asymmetries and Other Complications 126
8.1 Failures of the Linkage Principle 126
8.2 Asymmetric Equilibria in Symmetric Second-Price Auctions 131
8.3 Asymmetrically Informed Bidders 133
8.4 Reserve Prices and Entry Fees 135
Chapter 9. Efficiency and the English Auction 142
9.1 The Single Crossing Condition 143
9.2 Two-Bidder Auctions 144
9.3 The Average Crossing Condition 147
9.4 Three or More Bidders 148
9.5 Proof of Proposition 9.2 149
9.6 Miscellany 154
Chapter 10. Mechanism Design with Interdependent Values 158
10.1 Efficient Mechanisms 159
10.2 Optimal Mechanisms 163
Chapter 11. Bidding Rings 170
11.1 Collusion in Second-Price Auctions 171
11.1.1 Efficient Collusion 173
11.1.2 Reserve Prices in the Face of Collusion 176
11.2 Collusion in First-Price Auctions 179
Part II: Multiple-Object Auctions 184
Chapter 12. An Introduction to Multiple-Object Auctions 186
12.1 Sealed-Bid Auctions for Selling Identical Units 187
12.1.1 Discriminatory Auctions 189
12.1.2 Uniform-Price Auctions 190
12.1.3 Vickrey Auctions 191
12.2 Some Open Auctions 192
12.2.1 Dutch Auctions 192
12.2.2 English Auctions 193
12.2.3 Ausubel Auctions 193
Chapter 13. Equilibrium and Efficiency with Private Values 198
13.1 The Basic Model 198
13.2 Vickrey Auctions 200
13.3 Efficiency in Multiunit Auctions 202
13.4 Uniform-Price Auctions 203
13.4.1 Demand Reduction 205
13.4.2 Single-Unit Demand 209
13.5 Discriminatory Auctions 209
13.5.1 Structure of Equilibria 210
13.5.2 Single-Unit Demand 213
Chapter 14. Some Revenue Considerations 216
14.1 Revenue Equivalence in Multiunit Auctions 217
14.2 Revenue Equivalence with Multiunit Demand: An Example 219
Chapter 15. Sequential Sales 226
15.1 Sequential First-Price Auctions 226
15.1.1 Two Units 227
15.1.2 More than Two Units 230
15.1.3 Equilibrium Bids and Prices 232
15.2 Sequential Second-Price Auctions 234
15.2.1 Revenue Equivalence 234
15.2.2 Equilibrium Bids 235
Chapter 16. Nonidentical Objects 240
16.1 The Model 240
16.2 Efficient Allocations 242
16.3 Substitutes and Complements 243
16.4 Bundling 244
16.5 Some Computational Issues 246
16.6 Budget Constraints 248
Chapter 17. Packages and Positions 252
17.1 Package Auctions 253
17.1.1 The Ascending Auction 253
17.1.2 Gross Substitutes 254
17.1.3 Equilibrium of the Proxy Auction 256
17.2 Position Auctions 257
Chapter 18. Multiple Objects and Interdependent Values 264
18.1 One-Dimensional Signals 264
18.1.1 An Efficient Direct Mechanism 265
18.1.2 Efficiency via Open Auctions 268
18.2 Multidimensional Signals 272
18.2.1 Single Object 273
18.2.2 Multiple Objects 276
Part III: Appendices 280
Appendix A. Continuous Distributions 282
Appendix B. Stochastic Orders 288
Appendix C. Order Statistics 294
Appendix D. Affiliated Random Variables 298
Appendix E. Some Linear Algebra 302
Appendix F: Games of Incomplete Information 308
Appendix G. Existence of Equilibrium in First-Price Auctions 312
Bibliography 318
Index 328

Chapter Two

Private Value Auctions: A First Look


We begin the formal analysis by considering equilibrium bidding behavior in the four common auction forms in an environment with independently and identically distributed private values. In the previous chapter we argued that the open descending price (or Dutch) auction is strategically equivalent to the first-price sealed-bid auction. When values are private, the open ascending price (or English) auction is also equivalent to the second-price sealed-bid auction, albeit in a weaker sense. Thus, for our purposes, it is sufficient to consider the two sealed-bid auctions.

This chapter introduces the basic methodology of auction theory. We postulate an informational environment consisting of (1) a valuation structure for the bidders—in this case, that of private values—and (2) a distribution of information available to the bidders—in this case, it is independently and identically distributed. We consider different auction formats—in this case, first- and second-price sealed-bid auctions. Each auction format now determines a game of incomplete information among the bidders and, keeping the informational environment fixed, we determine a Bayesian-Nash equilibrium for each resulting game. When there are many equilibria, we usually select one on some basis—dominance, perfection, or symmetry—but make sure that the criterion is applied uniformly to all formats. The relative performance of the auction formats on grounds of revenue or efficiency is then evaluated by comparing the equilibrium outcomes in one format versus another.

2.1 THE SYMMETRIC MODEL


There is a single object for sale, and N potential buyers are bidding for the object. Bidder i assigns a value of Xi to the object—the maximum amount a bidder is willing to pay for the object. Each Xi is independently and identically distributed on some interval [0,ω] according to the increasing distribution function F. It is assumed that F admits a continuous density fF′ and has full support. We allow for the possibility that the support of F is the nonnegative real line [0,∞) and if that is so, with a slight abuse of notation, write ω = ∞. In any case, it is assumed that E [Xi] < ∞.

Bidder i knows the realization xi of Xi and only that other bidders' values are independently distributed according to F. Bidders are risk neutral; they seek to maximize their expected profits. All components of the model other than the realized values are assumed to be commonly known to all bidders. In particular, the distribution F is common knowledge, as is the number of bidders.

Finally, it is also assumed that bidders are not subject to any liquidity or budget constraints. Each bidder i has sufficient resources so if necessary, he or she can pay the seller up to his or her value xi. Thus, each bidder is both willing and able to pay up to his or her value.

We emphasize that the distribution of values is the same for all bidders, and we will refer to this situation as one involving symmetric bidders.

In this framework, we examine two major auction formats:

I. A first-price sealed-bid auction, where the highest bidder gets the object and pays the amount he bid

II. A second-price sealed-bid auction, where the highest bidder gets the object and pays the second highest bid

Each of these auction formats determines a game among the bidders. A strategy for a bidder is a function i:0,ω→R+, which determines his or her bid for any value. We will typically be interested in comparing the outcomes of a symmetric equilibrium—an equilibrium in which all bidders follow the same strategy—of one auction with a symmetric equilibrium of the other. Given that bidders are symmetric, it is natural to focus attention on symmetric equilibria. We ask the following questions:

What are symmetric equilibrium strategies in a first-price auction (I) and a second-price auction (II)?

From the point of view of the seller, which of the two auction formats yields a higher expected selling price in equilibrium?

2.2 SECOND-PRICE AUCTIONS


Although the first-price auction format is more familiar and even natural, we begin our analysis by considering second-price auctions. The strategic problem confronting bidders in second-price auctions is much simpler than that in first-price auctions, so they constitute a natural starting point. Also recall that in the private values framework, second-price auctions are equivalent to open ascending price (or English) auctions.

In a second-price auction, each bidder submits a sealed bid of bi, and given these bids, the payoffs are:

i=xi−maxj≠ibjifbi>maxj≠ibj0ifbi<maxj≠ibj

We also assume that if there is a tie, so bi = maxji bj, the object goes to each winning bidder with equal probability. Bidding behavior in a second-price auction is straightforward.

Proposition 2.1. In a second-price sealed-bid auction, it is a weakly dominant strategy to bid according to βII (x) = x.

Proof. Consider bidder 1, say, and suppose that p1 = maxj≠1 bj is the highest competing bid. By bidding x1, bidder 1 will win if x1 > p1 and not if x1 < p1 (if x1 = p1, bidder 1 is indifferent between winning and losing). Suppose, however, that he bids an amount z1 < x1. If x1 > z1 ≥ p1, then he still wins, and his profit is still x1 − p1. If p1 > x1 > z1, he still loses. However, if x1 > p1 > z1, then he loses, whereas if he had bid x1, he would have made a positive profit. Thus, bidding less than x1 can never increase his profit but in some circumstances may actually decrease it. A similar argument shows that it is not profitable to bid more than x1.

It should be noted that the argument in Proposition 2.1 relied neither on the assumption that bidders' values were independently distributed nor the assumption that they were identically so. Only the assumption of private values is important, and Proposition 2.1 holds as long as this is the case.

With Proposition 2.1 in hand, let us ask how much each bidder expects to pay in equilibrium. Fix a bidder—say, 1—and let the random variable Y1 ≡ Y1(N−1) denote the highest value among the N − 1 remaining bidders. In other words, Y1 is the highest-order statistic of X2,X3,…,XN (see Appendix C). Let G denote the distribution function of Y1. Clearly, for all y, G(y) = F(y)N−1. In a second-price auction, the expected payment by a bidder with value x can be written as

IIx=ProbWin×E2nd highest bid|xis the highest bid=ProbWin×E2nd highest value|xis the highest value=Gx×EY1|Y1<x

  (2.1)

2.3 FIRST-PRICE AUCTIONS


In a first-price auction, each bidder submits a sealed bid of bi, and given these bids, the payoffs are

i=xi−biifbi>maxj≠ibj0ifbi<maxj≠ibj

As before, if there is more than one bidder with the highest bid, the object goes to each such bidder with equal probability.

In a first-price auction, equilibrium behavior is more complicated than in a second-price auction. Clearly, no bidder would bid an amount equal to his or her value, since this would only guarantee a payoff of 0. Fixing the bidding behavior of others, at any bid that will neither win for sure nor lose for sure, the bidder faces a simple trade-off. An increase in the bid will increase the probability of winning while, at the same time reducing the gains from winning. To get some idea about how these effects balance off, we begin with a heuristic derivation of symmetric equilibrium strategies.

Suppose that bidders j ≠ 1 follow the symmetric, increasing, and differentiate equilibrium strategy βI ≡ β. Suppose bidder 1 receives a signal, X1 = x, and bids b. We wish to determine the optimal b.

First, notice that it can never be optimal to choose a bid b > β(ω), since in that case, bidder 1 would win for sure and could do better by reducing his bid slightly, so he still wins for sure but pays less. So we need only consider bids bβ(ω). Second, a bidder with value 0 would never submit a positive bid, since he would make a...

Erscheint lt. Verlag 28.9.2009
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Wirtschaft Allgemeines / Lexika
Wirtschaft Betriebswirtschaft / Management Finanzierung
Wirtschaft Volkswirtschaftslehre
ISBN-10 0-08-092293-7 / 0080922937
ISBN-13 978-0-08-092293-5 / 9780080922935
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 3,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen, Beispiele, Übungsaufgaben mit Musterlösungen

von Alexander Burger

eBook Download (2024)
Vahlen (Verlag)
19,99