Physics and Engineering of Radiation Detection -  Syed Naeem Ahmed

Physics and Engineering of Radiation Detection (eBook)

eBook Download: PDF | EPUB
2007 | 1. Auflage
800 Seiten
Elsevier Science (Verlag)
978-0-08-056964-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
86,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. It details the experimental techniques and instrumentation used in different detection systems in a very practical way without sacrificing the physics content. It provides useful formulae and explains methodologies to solve problems related to radiation measurements. With abundance of worked-out examples and end-of-chapter problems, this book enables the reader to understand the underlying physical principles and their applications. Detailed discussions on different detection media, such as gases, liquids, liquefied gases, semiconductors, and scintillators make this book an excellent source of information for students as well as professionals working in related fields. Chapters on statistics, data analysis techniques, software for data analysis, and data acquisition systems provide the reader with necessary skills to design and build practical systems and perform data analysis.

* Covers the modern techniques involved in detection and measurement of radiation and the underlying physical principles
* Illustrates theoretical and practical details with an abundance of practical, worked-out examples
* Provides practice problems at the end of each chapter
Physics and Engineering of Radiation Detection presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. It details the experimental techniques and instrumentation used in different detection systems in a very practical way without sacrificing the physics content. It provides useful formulae and explains methodologies to solve problems related to radiation measurements. With abundance of worked-out examples and end-of-chapter problems, this book enables the reader to understand the underlying physical principles and their applications. Detailed discussions on different detection media, such as gases, liquids, liquefied gases, semiconductors, and scintillators make this book an excellent source of information for students as well as professionals working in related fields. Chapters on statistics, data analysis techniques, software for data analysis, and data acquisition systems provide the reader with necessary skills to design and build practical systems and perform data analysis. Covers the modern techniques involved in detection and measurement of radiation and the underlying physical principles Illustrates theoretical and practical details with an abundance of practical, worked-out examples Provides practice problems at the end of each chapter

Front Cover 1
Physics and Engineering of Radiation Detection 4
Copyright Page 5
Contents 8
Preface 23
Chapter 1 Properties and Sources of Radiation 26
1.1 Types of Radiation 26
1.2 Waves or Particles? 27
1.3 Radioactivity and Radioactive Decay 29
1.3.A: Decay Energy or Q-Value 34
1.3.B: The Decay Equation 36
1.3.C: Composite Radionuclides 40
1.3.D: Radioactive Chain 43
1.3.E: Decay Equilibrium 47
1.3.F: Branching Ratio 49
1.3.G: Units of Radioactivity 50
1.4 Activation 51
1.5 Sources of Radiation 52
1.5.A: Natural Sources 52
1.5.B: Man-Made Sources 54
1.6 General Properties and Sources of Particles and Waves 55
1.6.A: Photons 56
1.6.B: Electrons 66
1.6.C: Positrons 70
1.6.D: Protons 71
1.6.E: Neutrons 73
1.6.F: Alpha Particles 78
1.6.G: Fission Fragments 79
1.6.H: Muons, Neutrinos and other Particles 81
Chapter 2 Interaction of Radiation with Matter 90
2.1 Some Basic Concepts and Terminologies 90
2.1.A: Inverse Square Law 91
2.1.B: Cross Section 92
2.1.C: Mean Free Path 93
2.1.D: Radiation Length 95
2.1.E: Conservation Laws 99
2.2 Types of Particle Interactions 101
2.2.A: Elastic Scattering 102
2.2.B: Inelastic Scattering 102
2.2.C: Annihilation 102
2.2.D: Bremsstrahlung 104
2.2.E: Cherenkov Radiation 105
2.3 Interaction of Photons with Matter 107
2.3.A: Interaction Mechanisms 107
2.3.B: Passage of Photons through Matter 122
2.4 Interaction of Heavy Charged Particles with Matter 130
2.4.A: Rutherford Scattering 130
2.4.B: Passage of Charged Particles through Matter 135
2.4.C: Bragg Curve 141
2.4.D: Energy Straggling 142
2.4.E: Range and Range Straggling 143
2.5 Interaction of Electrons with Matter 147
2.5.A: Interaction Modes 147
2.5.B: Passage of Electrons through Matter 152
2.5.C: Energy Straggling 155
2.5.D: Range of Electrons 157
2.6 Interaction of Neutral Particles with Matter 162
2.6.A: Neutrons 162
2.7 Problems 168
Chapter 3 Gas Filled Detectors 174
3.1 Production of Electron-Ion Pairs 174
3.2 Diffusion and Drift of Charges in Gases 177
3.2.A: Diffusion in the Absence of Electric Field 177
3.2.B: Drift of Charges in Electric Field 178
3.2.C: Effects of Impurities on Charge Transport 182
3.3 Regions of Operation of Gas Filled Detectors 186
3.3.A: Recombination Region 186
3.3.B: Ion Chamber Region 186
3.3.C: Proportional Region 187
3.3.D: Region of Limited Proportionality 191
3.3.E: Geiger-Mueller Region 191
3.3.F: Continuous Discharge 194
3.4 Ionization Chambers 194
3.4.A: Current Voltage Characteristics 195
3.4.B: Mechanical Design 195
3.4.C: Choice of Gas 202
3.4.D: Special Types of Ion Chambers 203
3.4.E: Applications of Ion Chambers 206
3.4.F: Advantages and Disadvantages of Ion Chambers 206
3.5 Proportional Counters 207
3.5.A: Multiplication Factor 209
3.5.B: Choice of Gas 213
3.5.C: Special Types of Proportional Counters 215
3.6 Geiger-Mueller Counters 216
3.6.A: Current-Voltage Characteristics 218
3.6.B: Dead Time 219
3.6.C: Choice of Gas 221
3.6.D: Quenching 222
3.6.E: Advantages and Disadvantages of GM Counters 223
3.7 Sources of Error in Gaseous Detectors 223
3.7.A: Recombination Losses 223
3.7.B: Effects of Contaminants 225
3.7.C: Effects of Space Charge Buildup 227
3.8 Detector Efficiency 232
3.8.A: Signal-to-Noise Ratio 237
Chapter 4 Liquid Filled Detectors 246
4.1 Properties of Liquids 246
4.1.A: Charge Pair Generation and Recombination 246
4.1.B: Drift of Charges 251
4.2 Liquid Ionization Chamber 254
4.2.A: Applications of Liquid Filled Ion Chambers 255
4.3 Liquid Proportional Counters 255
4.3.A: Charge Multiplication 255
4.4 Commonly Used Liquid Detection Media 258
4.5 Sources of Error in Liquid Filled Ionizing Detectors 259
4.5.A: Recombination 259
4.5.B: Parasitic Electron Capture and Trapping 261
4.6 Cherenkov Detectors 265
4.7 Bubble Chamber 267
4.8 Liquid Scintillator Detectors 268
Chapter 5 Solid State Detectors 274
5.1 Semiconductor Detectors 274
5.1.A: Structure of Semiconductors 275
5.1.B: Charge Carriers Distribution 276
5.1.C: Intrinsic, Compensated, and Extrinsic Semiconductors 276
5.1.D: Doping 277
5.1.E: Mechanism and Statistics of Electron-Hole Pair Production 280
5.1.F: Charge Conductivity 289
5.1.G: Materials Suitable for Radiation Detection 291
5.1.H: The pn-Junction 309
5.1.I: Modes of Operation of a pn-Diode 319
5.1.J: Desirable Properties 322
5.1.K: Specific Semiconductor Detectors 323
5.1.L: Radiation Damage in Semiconductors 327
5.2 Diamond Detectors 331
5.2.A: Charge Pair Production 332
5.2.B: Recombination 332
5.2.C: Drift of Charge Pairs 333
5.2.D: Leakage Current 335
5.2.E: Detector Design 335
5.2.F: Radiation Hardness 336
5.2.G: Applications 337
5.3 Thermoluminescent Detectors 337
5.3.A: Principle of Thermoluminescence 338
Chapter 6 Scintillation Detectors and Photodetectors 344
6.1 Scintillation Mechanism and Scintillator Properties 345
6.1.A: Basic Scintillation Mechanism 345
6.1.B: Light Yield 347
6.1.C: Rise and Decay Times 350
6.1.D: Quenching 352
6.1.E: Density and Atomic Weight 353
6.1.F: Mechanical Properties and Stability 353
6.1.G: Optical Properties 353
6.1.H: Phosphorescence or Afterglow 354
6.1.I: Temperature Dependence 355
6.1.J: Radiation Damage 357
6.1.K: Scintillation Efficiency 358
6.2 Organic Scintillators 361
6.2.A: Scintillation Mechanism 361
6.2.B: Plastic Scintillators 364
6.2.C: Liquid Scintillators 370
6.2.D: Crystalline Scintillators 373
6.3 Inorganic Scintillators 375
6.3.A: Scintillation Mechanism 376
6.3.B: Radiation Damage 377
6.3.C: Some Common Inorganic Scintillators 378
6.4 Transfer of Scintillation Photons 385
6.4.A: Types of Light Guides 386
6.5 Photodetectors 391
6.5.A: Photomultiplier Tubes 392
6.5.B: Photodiode Detectors 428
6.5.C: Avalanche Photodiode Detectors (APD) 430
Chapter 7 Position Sensitive Detection and Imaging 448
7.1 Some Important Terminologies and Quantities 448
7.1.A: Spatial Resolution 448
7.1.B: Efficiency 462
7.1.C: Sensitivity 464
7.1.D: Dynamic Range 464
7.1.E: Uniformity 464
7.1.F: Temporal Linearity 465
7.1.G: Noise and Signal-to-Noise Ratio (S/N) 465
7.2 Position Sensitive Detection 466
7.2.A: Types of Position Sensitive Detectors 466
7.2.B: Multiwire Proportional Chambers (MWPCs) 466
7.2.C: Multiwire Drift Chamber 470
7.2.D: Microstrip Gas Chambers 470
7.2.E: Semiconductor Microstrip Detectors (SMSDs) 471
7.3 Imaging Devices 475
7.3.A: Conventional Imaging 475
7.3.B: Electronics Imaging 476
7.3.C: Charged Coupled Devices 477
7.3.D: Direct Imaging 477
7.3.E: Indirect Imaging 481
7.3.F: Microstrip and Multiwire Detectors 482
7.3.G: Scintillating Fiber Detectors 482
Chapter 8 Signal Processing 488
8.1 Preamplification 489
8.1.A: Voltage Sensitive Preamplifier 490
8.1.B: Current Sensitive Preamplifier 492
8.1.C: Charge Sensitive Preamplifier 493
8.2 Signal Transport 499
8.2.A: Type of Cable 501
8.3 Pulse Shaping 505
8.3.A: Delay Line Pulse Shaping 505
8.3.B: CR-RC Pulse Shaping 506
8.3.C: Semi-Gaussian Pulse Shaping 513
8.3.D: Semi-Triangular Pulse Shaping 514
8.4 Filtering 515
8.4.A: Low Pass Filter 516
8.4.B: High Pass Filter 518
8.4.C: Band Pass Filter 518
8.5 Amplification 518
8.6 Discrimination 519
8.6.A: Pulse Counting 520
8.7 Analog to Digital Conversion 523
8.7.A: A/D-Conversion Related Parameters 523
8.7.B: A/D Conversion Methods 525
8.7.C: Hybrid ADCs 531
8.8 Digital Signal Processing 531
8.8.A: Digital Filters 533
8.9 Electronics Noise 534
8.9.A: Types of Electronics Noise 536
8.9.B: Noise in Specific Components 541
8.9.C: Measuring System Noise 544
8.9.D: Noise Reduction Techniques 544
Chapter 9 Essential Statistics for Data Analysis 550
9.1 Measures of Centrality 551
9.2 Measure of Dispersion 553
9.3 Probability 553
9.3.A: Frequentist Approach 554
9.3.B: Bayesian Approach 554
9.3.C: Probability Density Function 554
9.3.D: Some Common Distribution Functions 561
9.4 Confidence Intervals 571
9.5 Measurement Uncertainty 573
9.5.A: Systematic Errors 573
9.5.B: Random Errors 574
9.5.C: Error Propagation 574
9.5.D: Presentation of Results 576
9.6 Confidence Tests 576
9.6.A: Chi-Square (& #967
9.6.B: Student's t Test 578
9.7 Regression 580
9.7.A: Simple Linear Regression 580
9.7.B: Nonlinear Regression 581
9.8 Correlation 583
9.8.A: Pearson r or Simple Linear Correlation 584
9.9 Time Series Analysis 586
9.9.A: Smoothing 587
9.10 Frequency Domain Analysis 588
9.11 Counting Statistics 590
9.11.A: Measurement Precision and Detection Limits 590
Chapter 10 Software for Data Analysis 600
10.1 Standard Analysis Packages 600
10.1.A: ROOT 600
10.1.B: Origin® 611
10.1.C: MATLAB® 616
10.2 Custom-Made Data Analysis Packages 622
10.2.A: Data Import/Export Routines 623
10.2.B: Data Analysis Routines 624
10.2.C: Code Generation 625
10.2.D: Result Display 625
Chapter 11 Dosimetry and Radiation Protection 628
11.1 Importance of Dosimetry 628
11.1.A Dose and Dose Rate 629
11.2 Quantities Related to Dosimetry 629
11.2.A: Radiation Exposure and Dose 629
11.2.B: Flux or Fluence Rate 634
11.2.C: Integrated Flux or Fluence 635
11.2.D: Exposure and Absorbed Dose - Mathematical Definitions 636
11.2.E: Kerma, Cema, and Terma 640
11.2.F: Measuring Kerma and Exposure 644
11.2.G: Cavity Theories 644
11.2.H: LET and RBE 647
11.2.I: Beam Size 648
11.2.J: Internal Dose 649
11.3 Passive Dosimetry 652
11.3.A: Thermoluminescent Dosimetry 652
11.3.B: Optically Stimulated Luminescence Dosimetry 656
11.3.C: Film Dosimetry 658
11.3.D: Track Etch Dosimetry 660
11.4 Active Dosimetry 661
11.4.A: Ion Chamber Dosimetry 661
11.4.B: Solid State Dosimetry 667
11.4.C: Plastic Scintillator Dosimeter 671
11.4.D: Quartz Fiber Electroscope 672
11.5 Microdosimetry 674
11.5.A: Microdosimetric Quantities 674
11.5.B: Experimental Techniques 676
11.6 Biological Effects of Radiation 681
11.6.A: Acute and Chronic Radiation Exposure 682
11.6.B: Effects and Symptoms of Exposure 685
11.6.C: Exposure Limits 685
11.7 Radiation Protection 687
11.7.A: Exposure Reduction 687
Chapter 12 Radiation Spectroscopy 698
12.1 Spectroscopy of Photons 698
12.1.A: & #947
12.1.B: Calibration 702
12.1.C: X-ray Spectroscopy 703
12.2 Spectroscopy of Charged Particles 717
12.2.A: & #945
12.2.B: Electron Spectroscopy 723
12.3 Neutron Spectroscopy 724
12.3.A: Neutrons as Matter Probes 724
12.3.B: Neutron Spectrometry Techniques 726
12.4 Mass Spectroscopy 735
12.5 Time Spectroscopy 736
Chapter 13 Data Acquisition Systems 742
13.1 Data Acquisition Chain 742
13.1.A: Pulse Counting 742
13.1.B: Energy Spectroscopy 744
13.1.C: Time Spectroscopy 744
13.1.D: Coincidence Spectroscopy 745
13.2 Modular Instruments 746
13.2.A: NIM Standard 746
13.2.B: CAMAC Standard 750
13.2.C: VME Standard 751
13.2.D: FASTBUS Standard 754
13.3 PC Based Systems 754
13.3.A: PCI Boards 754
13.3.B: PC Serial Port Modules 755
13.3.C: PC Parallel Port Modules 757
13.3.D: USB Based Modules 757
13.3.E: TCP/IP Based Systems 757
Appendices 762
A: Essential Electronic Measuring Devices 764
A.1 Multimeters 764
A.2 Oscilloscope 766
B: Constants and Conversion Factors 774
B.1 Constants 774
B.2 Masses and Electrical Charges of Particles 775
B.3 Conversion Prefixes 776
C: VME Connector Pin Assignments 778
Index 782
A 782
B 782
C 782
D 783
E 783
F 784
G 784
H 784
I 784
J 785
K 785
L 785
M 785
N 785
O 785
P 785
Q 786
R 786
S 787
T 788
U 788
V 788
W 789
X 789

Erscheint lt. Verlag 12.4.2007
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Medizin / Pharmazie
Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Elektrodynamik
Technik
ISBN-10 0-08-056964-1 / 0080569641
ISBN-13 978-0-08-056964-2 / 9780080569642
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 6,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 13,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
An Introduction

von Philip Hofmann

eBook Download (2022)
Wiley-VCH GmbH (Verlag)
48,99