Chemical Engineering Design -  Ray Sinnott

Chemical Engineering Design (eBook)

Chemical Engineering Volume 6

(Autor)

eBook Download: PDF
2005 | 4. Auflage
1056 Seiten
Elsevier Science (Verlag)
978-0-08-049255-1 (ISBN)
Systemvoraussetzungen
51,98 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
"Chemical Engineering Design is one of the best-known and widely adopted texts available for students of chemical engineering. It deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, the fourth edition covers the latest aspects of process design, operations, safety, loss prevention and equipment selection, among others. Comprehensive and detailed, the book is supported by problems and selected solutions. In addition the book is widely used by professionals as a day-to-day reference.

*Best selling chemical engineering text
*Revised to keep pace with the latest chemical industry changes, designed to see students through from undergraduate study to professional practice
*End of chapter exercises and solutions"
Chemical Engineering Design is one of the best-known and widely adopted texts available for students of chemical engineering. It deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, the fourth edition covers the latest aspects of process design, operations, safety, loss prevention and equipment selection, among others. Comprehensive and detailed, the book is supported by problems and selected solutions. In addition the book is widely used by professionals as a day-to-day reference. - Best selling chemical engineering text- Revised to keep pace with the latest chemical industry changes; designed to see students through from undergraduate study to professional practice- End of chapter exercises and solutions

Front Cover 1
Copyright 5
Table of Contents 6
Preface to Fourth Edition 18
Preface to Third Edition 21
Preface to Second Edition 22
Preface to First Edition 24
Series Editor’s Preface 25
Acknowledgement 26
1 Introduction to Design 28
1.1. INTRODUCTION 28
1.2. NATURE OF DESIGN 28
1.2.1. The design objective (the need) 30
1.2.2. Data collection 30
1.2.3. Generation of possible design solutions 30
1.2.4. Selection 31
1.3. THE ANATOMY OF A CHEMICAL MANUFACTURING PROCESS 32
1.3.1. Continuous and batch processes 34
1.4. THE ORGANISATION OF A CHEMICAL ENGINEERING PROJECT 34
1.5. PROJECT DOCUMENTATION 37
1.6. CODES AND STANDARDS 39
1.7. FACTORS OF SAFETY (DESIGN FACTORS) 40
1.8. SYSTEMS OF UNITS 41
1.9. DEGREES OF FREEDOM AND DESIGN VARIABLES. THE MATHEMATICAL REPRESENTATION OF THE DESIGN PROBLEM 42
1.9.1. Information flow and design variables 42
1.9.2. Selection of design variables 46
1.9.3. Information flow and the structure of design problems 47
1.10. OPTIMISATION 51
1.10.1. General procedure 52
1.10.2. Simple models 52
Example 1.1 53
1.10.3. Multiple variable problems 54
1.10.4. Linear programming 56
1.10.5. Dynamic programming 56
1.10.6. Optimisation of batch and semicontinuous processes 56
1.11 REFERENCES 57
1.12 NOMENCLATURE 58
1.13 PROBLEMS 59
2 Fundamentals of Material Balances 61
2.1. INTRODUCTION 61
2.2. THE EQUIVALENCE OF MASS AND ENERGY 61
2.3. CONSERVATION OF MASS 61
Example 2.1 62
2.4. UNITS USED TO EXPRESS COMPOSITIONS 62
Example 2.2 62
2.5. STOICHIOMETRY 63
Example 2.3 63
2.6. CHOICE OF SYSTEM BOUNDARY 64
Example 2.4 65
2.7. CHOICE OF BASIS FOR CALCULATIONS 67
2.8. NUMBER OF INDEPENDENT COMPONENTS 67
Example 2.5 68
2.9. CONSTRAINTS ON FLOWS AND COMPOSITIONS 68
Example 2.6 69
2.10. GENERAL ALGEBRAIC METHOD 69
2.11. TIE COMPONENTS 71
Example 2.7 71
Example 2.8 72
2.12. EXCESS REAGENT 73
Example 2.9 73
2.13. CONVERSION AND YIELD 74
Example 2.10 74
Example 2.11 75
Example 2.12 76
2.14. RECYCLE PROCESSES 77
Example 2.13 78
2.15. PURGE 79
Example 2.14 80
2.16. BY-PASS 80
2.17. UNSTEADY-STATE CALCULATIONS 81
Example 2.15 81
2.18. GENERAL PROCEDURE FOR MATERIAL-BALANCE PROBLEMS 83
2.19. REFERENCES (FURTHER READING) 84
2.20. NOMENCLATURE 84
2.21. PROBLEMS 84
3 Fundamentals of Energy Balances (and Energy Utilisation) 87
3.1. INTRODUCTION 87
3.2. CONSERVATION OF ENERGY 87
3.3. FORMS OF ENERGY (PER UNIT MASS OF MATERIAL) 88
3.3.1. Potential energy 88
3.3.2. Kinetic energy 88
3.3.3. Internal energy 88
3.3.4. Work 88
3.3.5. Heat 89
3.3.6. Electrical energy 89
3.4. THE ENERGY BALANCE 89
Example 3.1 90
3.5. CALCULATION OF SPECIFIC ENTHALPY 94
Example 3.2 94
3.6. MEAN HEAT CAPACITIES 95
Example 3.3 96
3.7. THE EFFECT OF PRESSURE ON HEAT CAPACITY 97
Example 3.4 98
3.8. ENTHALPY OF MIXTURES 98
3.8.1. Integral heats of solution 99
Example 3.5 99
3.9. ENTHALPY-CONCENTRATION DIAGRAMS 100
Example 3.6 100
3.10. HEATS OF REACTION 102
3.10.1. Effect of pressure on heats of reaction 104
Example 3.7 104
3.11. STANDARD HEATS OF FORMATION 106
Example 3.8 106
3.12. HEATS OF COMBUSTION 107
Example 3.9 107
3.13. COMPRESSION AND EXPANSION OF GASES 108
3.13.1. Mollier diagrams 109
Example 3.10 109
3.13.2. Polytropic compression and expansion 111
Example 3.11 112
3.13.3. Multistage compressors 117
Example 3.12 117
Example 3.13 118
3.13.4. Electrical drives 120
3.14. ENERGY BALANCE CALCULATIONS 120
Energy 1, a simple computer program 120
Example 3.14a 122
Example 13.14b 125
Example 3.14b 125
3.15. UNSTEADY STATE ENERGY BALANCES 126
Example 3.15 127
3.16. ENERGY RECOVERY 128
3.16.1. Heat exchange 128
3.16.2. Heat-exchanger networks 128
3.16.3. Waste-heat boilers 129
3.16.4. High-temperature reactors 130
3.16.5. Low-grade fuels 132
Example 3.16 133
3.16.6. High-pressure process streams 134
Example 3.17 135
3.16.7. Heat pumps 137
3.17. PROCESS INTEGRATION AND PINCH TECHNOLOGY 138
3.17.1. Pinch technology 138
3.17.2. The problem table method 142
3.17.3. The heat exchanger network 144
3.17.4. Minimum number of exchangers 148
Importance of the minimum temperature difference 149
3.17.5. Threshold problems 150
3.17.6. Multiple pinches and multiple utilities 151
3.17.7. Process integration: integration of other process operations 151
Example 3.18 151
3.18. REFERENCES 154
3.19. NOMENCLATURE 155
3.20. PROBLEMS 157
4 Flow-sheeting 160
4.1. INTRODUCTION 160
4.2. FLOW-SHEET PRESENTATION 160
4.2.1. Block diagrams 161
4.2.2. Pictorial representation 161
4.2.3. Presentation of stream flow-rates 161
4.2.4. Information to be included 162
4.2.5. Layout 166
4.2.6. Precision of data 166
4.2.7. Basis of the calculation 167
4.2.8. Batch processes 167
4.2.9. Services (utilities) 167
4.2.10. Equipment identification 167
4.2.11. Computer aided drafting 167
4.3. MANUAL FLOW-SHEET CALCULATIONS 168
4.3.1. Basis for the flow-sheet calculations 169
4.3.2. Flow-sheet calculations on individual units 170
Example 4.1 171
Example 4.2 173
Example 4.3 176
Example 4.4 177
4.4. COMPUTER-AIDED FLOW-SHEETING 195
4.5. FULL STEADY-STATE SIMULATION PROGRAMS 195
4.5.1. Information flow diagrams 198
4.6. MANUAL CALCULATIONS WITH RECYCLE STREAMS 199
4.6.1. The split-fraction concept 199
4.6.2. Illustration of the method 203
4.6.3. Guide rules for estimating split-fraction coefficients 212
4.7. REFERENCES 214
4.8. NOMENCLATURE 215
4.9. PROBLEMS 215
5 Piping and Instrumentation 221
5.1. INTRODUCTION 221
5.2. THE P AND I DIAGRAM 221
5.2.1. Symbols and layout 222
5.2.2. Basic symbols 222
5.3. VALVE SELECTION 224
5.4. PUMPS 226
5.4.1. Pump selection 226
5.4.2. Pressure drop in pipelines 228
Example 5.1 231
5.4.3. Power requirements for pumping liquids 233
Example 5.2 234
5.4.4. Characteristic curves for centrifugal pumps 235
5.4.5. System curve (operating line) 237
Example 5.3 237
5.4.6. Net positive suction head (NPSH) 239
Example 5.4 239
5.4.7. Pump and other shaft seals 240
5.5. MECHANICAL DESIGN OF PIPING SYSTEMS 243
5.5.1. Wall thickness: pipe schedule 243
Example 5.5 244
5.5.2. Pipe supports 244
5.5.3. Pipe fittings 244
5.5.4. Pipe stressing 244
5.5.5. Layout and design 245
5.6. PIPE SIZE SELECTION 245
Example 5.6 249
Example 5.7 249
Example 5.8 250
5.7. CONTROL AND INSTRUMENTATION 254
5.7.1. Instruments 254
5.7.2. Instrumentation and control objectives 254
5.7.3. Automatic-control schemes 255
5.8. TYPICAL CONTROL SYSTEMS 256
5.8.1. Level control 256
5.8.2. Pressure control 256
5.8.3. Flow control 256
5.8.4. Heat exchangers 257
5.8.5. Cascade control 258
5.8.6. Ratio control 258
5.8.7. Distillation column control 258
5.8.8. Reactor control 260
5.9. ALARMS AND SAFETY TRIPS, AND INTERLOCKS 262
5.10. COMPUTERS AND MICROPROCESSORS IN PROCESS CONTROL 263
5.11. REFERENCES 265
5.12. NOMENCLATURE 266
5.13. PROBLEMS 267
6 Costing and Project Evaluation 270
6.1. INTRODUCTION 270
6.2. ACCURACY AND PURPOSE OF CAPITAL COST ESTIMATES 270
6.3. FIXED AND WORKING CAPITAL 271
6.4. COST ESCALATION (INFLATION) 272
Example 6.1 274
6.5. RAPID CAPITAL COST ESTIMATING METHODS 274
6.5.1. Historical costs 274
Example 6.2 274
6.5.2. Step counting methods 276
Example 6.3 277
6.6. THE FACTORIAL METHOD OF COST ESTIMATION 277
6.6.1. Lang factors 278
6.6.2. Detailed factorial estimates 278
6.7. ESTIMATION OF PURCHASED EQUIPMENT COSTS 280
6.8. SUMMARY OF THE FACTORIAL METHOD 287
6.9. OPERATING COSTS 287
6.9.1. Estimation of operating costs 288
Example 6.4 294
6.10. ECONOMIC EVALUATION OF PROJECTS 297
6.10.1. Cash flow and cash-flow diagrams 297
6.10.2. Tax and depreciation 299
6.10.3. Discounted cash flow (time value of money) 299
6.10.4. Rate of return calculations 300
6.10.5. Discounted cash-flow rate of return (DCFRR) 300
6.10.6. Pay-back time 301
6.10.7. Allowing for inflation 301
6.10.8. Sensitivity analysis 301
6.10.9. Summary 302
Example 6.5 302
Example 6.6 303
6.11. COMPUTER METHODS FOR COSTING AND PROJECT EVALUATION 305
6.12. REFERENCES 306
6.13. NOMENCLATURE 306
6.14. PROBLEMS 307
7 Materials of Construction 311
7.1. INTRODUCTION 311
7.2. MATERIAL PROPERTIES 311
7.3. MECHANICAL PROPERTIES 312
7.3.1. Tensile strength 312
7.3.2. Stiffness 312
7.3.3. Toughness 313
7.3.4. Hardness 313
7.3.5. Fatigue 313
7.3.6. Creep 314
7.3.7. Effect of temperature on the mechanical properties 314
7.4. CORROSION RESISTANCE 314
7.4.1. Uniform corrosion 315
7.4.2. Galvanic corrosion 316
7.4.3. Pitting 317
7.4.4. Intergranular corrosion 317
7.4.5. Effect of stress 317
7.4.6. Erosion-corrosion 318
7.4.7. High-temperature oxidation 318
7.4.8. Hydrogen embrittlement 319
7.5. SELECTION FOR CORROSION RESISTANCE 319
7.6. MATERIAL COSTS 320
7.7. CONTAMINATION 321
7.7.1. Surface finish 322
7.8. COMMONLY USED MATERIALS OF CONSTRUCTION 322
7.8.1. Iron and steel 322
7.8.2. Stainless steel 323
7.8.3. Nickel 325
7.8.4. Monel 326
7.8.5. Inconel 326
7.8.6. The Hastelloys 326
7.8.7. Copper and copper alloys 326
7.8.8. Aluminium and its alloys 326
7.8.9. Lead 327
7.8.10. Titanium 327
7.8.11. Tantalum 327
7.8.12. Zirconium 327
7.8.13. Silver 328
7.8.14. Gold 328
7.8.15. Platinum 328
7.9. PLASTICS AS MATERIALS OF CONSTRUCTION FOR CHEMICAL PLANT 328
7.9.1. Poly-vinyl chloride (PVC) 329
7.9.2. Polyolefines 329
7.9.3. Polytetrafluroethylene (PTFE) 329
7.9.4. Polyvinylidene fluoride (PVDF) 329
7.9.5. Glass-fibre reinforced plastics (GRP) 329
7.9.6. Rubber 330
7.10. CERAMIC MATERIALS (SILICATE MATERIALS) 330
7.10.1. Glass 331
7.10.2. Stoneware 331
7.10.3. Acid-resistant bricks and tiles 331
7.10.4. Refractory materials (refractories) 331
7.11. CARBON 332
7.12. PROTECTIVE COATINGS 332
7.13. DESIGN FOR CORROSION RESISTANCE 332
7.14. REFERENCES 332
7.15. NOMENCLATURE 334
7.16. PROBLEMS 334
8 Design Information and Data 336
8.1. INTRODUCTION 336
8.2. SOURCES OF INFORMATION ON MANUFACTURING PROCESSES 336
8.3. GENERAL SOURCES OF PHYSICAL PROPERTIES 338
8.4. ACCURACY REQUIRED OF ENGINEERING DATA 339
8.5. PREDICTION OF PHYSICAL PROPERTIES 340
8.6. DENSITY 341
8.6.1. Liquids 341
Example 8.1 341
8.6.2. Gas and vapour density (specific volume) 342
8.7. VISCOSITY 343
8.7.1. Liquids 343
Example 8.2 343
Example 8.3 345
8.7.2 Gases 347
8.8 THERMAL CONDUCTIVITY 347
8.8.1. Solids 347
8.8.2. Liquids 348
Example 8.4 348
8.8.3. Gases 348
Example 8.5 348
8.8.4. Mixtures 349
8.9. SPECIFIC HEAT CAPACITY 349
8.9.1. Solids and liquids 349
Example 8.6 350
Example 8.7 350
Example 8.8 352
8.9.2. Gases 352
Example 8.9 355
8.10. ENTHALPY OF VAPORISATION (LATENT HEAT) 355
8.10.1. Mixtures 356
Example 8.10 356
8.11. VAPOUR PRESSURE 357
8.12. DIFFUSION COEFFICIENTS (DIFFUSIVITIES) 358
8.12.1. Gases 358
Example 8.11 359
8.12.2. Liquids 360
Example 8.12 360
8.13. SURFACE TENSION 362
8.13.1. Mixtures 362
Example 8.13 363
8.14. CRITICAL CONSTANTS 363
Example 8.14 365
8.15. ENTHALPY OF REACTION AND ENTHALPY OF FORMATION 366
8.16. PHASE EQUILIBRIUM DATA 366
8.16.1. Experimental data 366
8.16.2. Phase equilibria 366
8.16.3. Equations of state 368
8.16.4. Correlations for liquid phase activity coefficients 369
Example 8.15 371
Example 8.15 371
8.16.5. Prediction of vapour-liquid equilibria 373
8.16.6. K-values for hydrocarbons 375
8.16.7. Sour-water systems (Sour) 375
8.16.8. Vapour-liquid equilibria at high pressures 375
8.16.9. Liquid-liquid equilibria 375
8.16.10. Choice of phase equilibria for design calculations 377
8.16.11. Gas solubilities 378
8.16.12. Use of equations of state to estimate specific enthalpy and density 380
Density 380
8.17. REFERENCES 380
8.18. NOMENCLATURE 384
8.19. PROBLEMS 385
9 Safety and Loss Prevention 387
9.1. INTRODUCTION 387
9.2. INTRINSIC AND EXTRINSIC SAFETY 388
9.3. THE HAZARDS 388
9.3.1. Toxicity 388
9.3.2. Flammability 390
9.3.3. Explosions 392
9.3.4. Sources of ignition 393
9.3.5. Ionising radiation 395
9.3.6. Pressure 395
9.3.7. Temperature deviations 396
9.3.8. Noise 397
9.4. DOW FIRE AND EXPLOSION INDEX 398
9.4.1. Calculation of the Dow F & EI
9.4.2 Potential loss 402
9.4.3. Basic preventative and protective measures 404
9.4.4. Mond fire, explosion, and toxicity index 405
9.4.5. Summary 406
Example 9.1 406
9.5. HAZARD AND OPERABILITY STUDIES 408
9.5.1. Basic principles 409
9.5.2. Explanation of guide words 410
9.5.3. Procedure 411
Example 9.2 412
9.6. HAZARD ANALYSIS 416
9.7. ACCEPTABLE RISK AND SAFETY PRIORITIES 417
9.8. SAFETY CHECK LISTS 419
9.9. MAJOR HAZARDS 421
9.9.1. Computer software for quantitative risk analysis 422
9.10 REFERENCES 423
9.11. PROBLEMS 425
10 Equipment Selection, Specification and Design 427
10.1. INTRODUCTION 427
10.2. SEPARATION PROCESSES 428
10.3. SOLID-SOLID SEPARATIONS 428
10.3.1. Screening (sieving) 428
10.3.2. Liquid-solid cyclones 431
10.3.3. Hydroseparators and sizers (classifiers) 432
10.3.4. Hydraulic jigs 432
10.3.5. Tables 432
10.3.6. Classifying centrifuges 433
10.3.7. Dense-medium separators (sink and float processes) 433
10.3.8. Flotation separators (froth-flotation) 434
10.3.9. Magnetic separators 434
10.3.10. Electrostatic separators 435
10.4. LIQUID-SOLID (SOLID-LIQUID) SEPARATORS 435
10.4.1. Thickeners and clarifiers 435
10.4.2. Filtration 436
10.4.3. Centrifuges 442
Example 10.1 446
10.4.4. Hydrocyclones (liquid-cyclones) 449
Example 10.2 453
10.4.5. Pressing (expression) 453
10.4.6. Solids drying 453
Fluidised bed dryers 458
10.5. SEPARATION OF DISSOLVED SOLIDS 461
10.5.1. Evaporators 461
10.5.2. Crystallisation 464
10.6. LIQUID-LIQUID SEPARATION 467
10.6.1. Decanters (settlers) 467
Example 10.3 470
10.6.2. Plate separators 472
10.6.3. Coalescers 472
10.6.4. Centrifugal separators 473
10.7. SEPARATION OF DISSOLVED LIQUIDS 473
10.7.1. Solvent extraction and leaching 474
10.8. GAS-SOLIDS SEPARATIONS (GAS CLEANING) 475
10.8.1. Gravity settlers (settling chambers) 475
10.8.2. Impingement separators 475
10.8.3. Centrifugal separators (cyclones) 477
Example 10.4 482
10.8.4. Filters 485
10.8.5. Wet scrubbers (washing) 486
10.8.6. Electrostatic precipitators 486
10.9. GAS LIQUID SEPARATORS 487
10.9.1. Settling velocity 488
10.9.2. Vertical separators 488
Example 10.5 489
10.9.3. Horizontal separators 490
Example 10.6 490
10.10. CRUSHING AND GRINDING (COMMINUTION) EQUIPMENT 492
10.11. MIXING EQUIPMENT 495
10.11.1. Gas mixing 495
10.11.2. Liquid mixing 495
10.11.3. Solids and pastes 503
10.12. TRANSPORT AND STORAGE OF MATERIALS 503
10.12.1. Gases 504
10.12.2. Liquids 506
10.12.3. Solids 508
10.13. REACTORS 509
10.13.1. Principal types of reactor 510
10.13.2. Design procedure 513
10.14. REFERENCES 513
10.15. NOMENCLATURE 517
10.16. PROBLEMS 518
11 Separation Columns (Distillation, Absorption and Extraction) 520
11.1. INTRODUCTION 520
11.2. CONTINUOUS DISTILLATION: PROCESS DESCRIPTION 521
11.2.1. Reflux considerations 522
11.2.2. Feed-point location 523
11.2.3. Selection of column pressure 523
11.3. CONTINUOUS DISTILLATION: BASIC PRINCIPLES 524
11.3.1. Stage equations 524
11.3.2. Dew points and bubble points 525
11.3.3. Equilibrium flash calculations 526
Example 11.1 527
11.4. DESIGN VARIABLES IN DISTILLATION 528
11.5. DESIGN METHODS FOR BINARY SYSTEMS 530
11.5.1. Basic equations 530
11.5.2. McCabe-Thiele method 532
11.5.3. Low product concentrations 534
Example 11.2 535
Example 11.3 538
11.5.4. The Smoker equations 539
Example 11.4 540
11.6. MULTICOMPONENT DISTILLATION: GENERAL CONSIDERATIONS 542
11.6.1. Key components 543
11.6.2. Number and sequencing of columns 544
11.7. MULTICOMPONENT DISTILLATION: SHORT-CUT METHODS FOR STAGE AND REFLUX REQUIREMENTS 544
11.7.1. Pseudo-binary systems 545
Example 11.5 546
11.7.2. Smith-Brinkley method 549
11.7.3. Empirical correlations 550
11.7.4. Distribution of non-key components (graphical method) 553
Example 11.6 554
Example 11.7 556
Example 11.8 557
Example 11.9 558
11.8. MULTICOMPONENT SYSTEMS: RIGOROUS SOLUTION PROCEDURES ( COMPUTER METHODS) 569
11.8.1. Lewis-Matheson method 570
11.8.2. Thiele-Geddes method 571
11.8.3. Relaxation methods 572
11.8.4. Linear algebra methods 572
11.9. OTHER DISTILLATION SYSTEMS 573
11.9.1. Batch distillation 573
11.9.2. Steam distillation 573
11.9.3. Reactive distillation 574
11.10. PLATE EFFICIENCY 574
11.10.1. Prediction of plate efficiency 575
11.10.2. O'Connell's correlation 577
Example 11.10 578
11.10.3. Van Winkle's correlation 579
11.10.4. AIChE method 580
11.10.5. Entrainment 583
11.11. APPROXIMATE COLUMN SIZING 584
11.12. PLATE CONTACTORS 584
11.12.1. Selection of plate type 587
11.12.2. Plate construction 588
11.13. PLATE HYDRAULIC DESIGN 592
11.13.1. Plate-design procedure 594
11.13.2. Plate areas 594
11.13.3. Diameter 594
11.13.4. Liquid-flow arrangement 596
11.13.5. Entrainment 597
11.13.6. Weep point 598
11.13.7. Weir liquid crest 599
11.13.8. Weir dimensions 599
11.13.9. Perforated area 599
11.13.10. Hole size 600
11.13.11. Hole pitch 601
11.13.12. Hydraulic gradient 601
11.13.13. Liquid throw 602
11.13.14. Plate pressure drop 602
11.13.15. Downcomer design [back-up] 604
Example 11.11 606
Example 11.12 612
Example 11.13 614
11.14. PACKED COLUMNS 614
11.14.1. Types of packing 616
11.14.2. Packed-bed height 620
11.14.3. Prediction of the height of a transfer unit (HTU) 624
11.14.4. Column diameter (capacity) 629
Example 11.14 631
11.14.5. Column internals 636
11.14.6. Wetting rates 643
11.15. COLUMN AUXILIARIES 643
11.16. SOLVENT EXTRACTION (LIQUID LIQUID EXTRACTION) 644
11.16.1. Extraction equipment 644
11.16.2. Extractor design 645
Example 11.15 648
11.16.3. Extraction columns 650
11.16.4. Supercritical fluid extraction 651
11.17. REFERENCES 651
11.18. NOMENCLATURE 654
11.19. PROBLEMS 657
12 Heat-transfer Equipment 661
12.1. INTRODUCTION 661
12.2. BASIC DESIGN PROCEDURE AND THEORY 662
12.2.1. Heat exchanger analysis: the effectiveness NTU method 663
12.3. OVERALL HEAT-TRANSFER COEFFICIENT 663
12.4. FOULING FACTORS (DIRT FACTORS) 665
12.5. SHELL AND TUBE EXCHANGERS: CONSTRUCTION DETAILS 667
12.5.1. Heat-exchanger standards and codes 671
12.5.2. Tubes 672
12.5.3. Shells 674
12.5.4. Tube-sheet layout (tube count) 674
12.5.5. Shell types (passes) 676
12.5.6. Shell and tube designation 676
12.5.7. Baffles 677
12.5.8. Support plates and tie rods 679
12.5.9. Tube sheets (plates) 679
12.5.10. Shell and header nozzles (branches) 680
12.5.11. Flow-induced tube vibrations 680
12.6. MEAN TEMPERATURE DIFFERENCE (TEMPERATURE DRIVING FORCE) 682
12.7. SHELL AND TUBE EXCHANGERS: GENERAL DESIGN CONSIDERATIONS 687
12.7.1. Fluid allocation: shell or tubes 687
12.7.2. Shell and tube fluid velocities 687
12.7.3. Stream temperatures 688
12.7.4. Pressure drop 688
12.7.5. Fluid physical properties 688
12.8. TUBE-SIDE HEAT-TRANSFER COEFFICIENT AND PRESSURE DROP (SINGLE PHASE) 689
12.8.1. Heat transfer 689
12.8.2. Tube-side pressure drop 693
12.9. SHELL-SIDE HEAT-TRANSFER AND PRESSURE DROP (SINGLE PHASE) 696
12.9.1. Flow pattern 696
12.9.2. Design methods 697
12.9.3. Kern's method 698
Example 12.1 702
Example 12.2 706
Example 12.3 710
12.9.4. Bell's method 720
12.9.5. Shell and bundle geometry 729
12.9.6. Effect of fouling on pressure drop 732
12.9.7. Pressure-drop limitations 732
Example 12.4 733
12.10. CONDENSERS 736
12.10.1. Heat-transfer fundamentals 737
12.10.2. Condensation outside horizontal tubes 737
12.10.3. Condensation inside and outside vertical tubes 738
Example 12.5 740
Example 12.6 742
12.10.4. Condensation inside horizontal tubes 743
12.10.5. Condensation of steam 744
12.10.6. Mean temperature difference 744
12.10.7. Desuperheating and sub-cooling 744
12.10.8. Condensation of mixtures 746
12.10.9. Pressure drop in condensers 750
Example 12.7 751
12.11. REBOILERS AND VAPORISERS 755
12.11.1. Boiling heat-transfer fundamentals 758
12.11.2. Pool boiling 759
Example 12.8 761
12.11.3. Convective boiling 762
Example 12.9 766
12.11.4. Design of forced-circulation reboilers 767
12.11.5. Design of thermosyphon reboilers 768
Example 12.10 772
Example 12.11 773
12.11.6. Design of kettle reboilers 777
Example 12.12 779
12.12. PLATE HEAT EXCHANGERS 783
12.12.1. Gasketed plate heat exchangers 783
Example 12.13 788
12.12.2. Welded plate 791
12.12.3. Plate-fin 791
12.12.4. Spiral heat exchangers 792
12.13. DIRECT-CONTACT HEAT EXCHANGERS 793
12.14. FINNED TUBES 794
12.15. DOUBLE-PIPE HEAT EXCHANGERS 795
12.16. AIR-COOLED EXCHANGERS 796
12.17. FIRED HEATERS (FURNACES AND BOILERS) 796
12.17.1. Basic construction 797
12.17.2. Design 798
12.17.3. Heat transfer 799
12.17.4. Pressure drop 801
12.17.5. Process-side heat transfer and pressure drop 801
12.17.6. Stack design 801
12.17.7. Thermal efficiency 802
12.18. HEAT TRANSFER TO VESSELS 802
12.18.1. Jacketed vessels 802
12.18.2. Internal coils 804
12.18.3. Agitated vessels 805
Example 12.14 807
Example 12.15 808
12.19. REFERENCES 809
12.20. NOMENCLATURE 813
12.21. PROBLEMS 817
13 Mechanical Design of Process Equipment 821
13.1. INTRODUCTION 821
13.1.1. Classification of pressure vessels 822
13.2. PRESSURE VESSEL CODES AND STANDARDS 822
13.3. FUNDAMENTAL PRINCIPLES AND EQUATIONS 823
13.3.1. Principal stresses 823
13.3.2. Theories of failure 824
13.3.3. Elastic stability 825
13.3.4. Membrane stresses in shells of revolution 825
13.3.5. Flat plates 832
13.3.6. Dilation of vessels 836
13.3.7. Secondary stresses 836
13.4. GENERAL DESIGN CONSIDERATIONS: PRESSURE VESSELS 837
13.4.1. Design pressure 837
13.4.2. Design temperature 837
13.4.3. Materials 838
13.4.4. Design stress (nominal design strength) 838
13.4.5. Welded joint efficiency, and construction categories 839
13.4.6. Corrosion allowance 840
13.4.7. Design loads 841
13.4.8. Minimum practical wall thickness 841
13.5. THE DESIGN OF THIN-WALLED VESSELS UNDER INTERNAL PRESSURE 842
13.5.1. Cylinders and spherical shells 842
13.5.2. Heads and closures 842
13.5.3. Design of flat ends 844
13.5.4. Design of domed ends 845
13.5.5. Conical sections and end closures 846
Example 13.1 848
13.6. COMPENSATION FOR OPENINGS AND BRANCHES 849
13.7. DESIGN OF VESSELS SUBJECT TO EXTERNAL PRESSURE 852
13.7.1. Cylindrical shells 852
13.7.2. Design of stiffness rings 855
13.7.3. Vessel heads 856
Example 13.2 857
13.8. DESIGN OF VESSELS SUBJECT TO COMBINED LOADING 858
13.8.1. Weight loads 862
13.8.2. Wind loads (tall vessels) 864
13.8.3. Earthquake loading 866
13.8.4. Eccentric loads (tall vessels) 867
13.8.5. Torque 868
Example 13.3 868
13.9. VESSEL SUPPORTS 871
13.9.1. Saddle supports 871
13.9.2. Skirt supports 875
Example 13.4 880
13.9.3. Bracket supports 883
13.10. BOLTED FLANGED JOINTS 885
13.10.1. Types of flange, and selection 885
13.10.2. Gaskets 886
13.10.3. Flange faces 888
13.10.4. Flange design 889
13.10.5. Standard flanges 892
13.11. HEAT-EXCHANGER TUBE-PLATES 894
13.12. WELDED JOINT DESIGN 896
13.13. FATIGUE ASSESSMENT OF VESSELS 899
13.14. PRESSURE TESTS 899
13.15. HIGH-PRESSURE VESSELS 900
13.15.1. Fundamental equations 900
13.15.2. Compound vessels 904
13.15.3. Autofrettage 905
13.16. LIQUID STORAGE TANKS 906
13.17. MECHANICAL DESIGN OF CENTRIFUGES 906
13.17.1. Centrifugal pressure 906
13.17.2. Bowl and spindle motion: critical speed 908
13.18. REFERENCES 910
13.19. NOMENCLATURE 912
13.20. PROBLEMS 916
14 General Site Considerations 919
14.1. INTRODUCTION 919
14.2. PLANT LOCATION AND SITE SELECTION 919
14.3. SITE LAYOUT 921
14.4. PLANT LAYOUT 923
14.4.1. Techniques used in site and plant layout 924
14.5. UTILITIES 927
14.6. ENVIRONMENTAL CONSIDERATIONS 929
14.6.1. Waste management 929
14.6.2. Noise 932
14.6.3. Visual impact 932
14.6.4. Legislation 932
14.6.5. Environmental auditing 933
14.7. REFERENCES 933
Appendix A Graphical Symbols for Piping Systems and Plant 935
Appendix B Corrosion Chart 944
Appendix C Physical Property Data Bank 964
Appendix D Conversion Factors for Some Common SI Units 985
Appendix E Standard Flanges 987
Appendix F Design Projects 992
F.1 ETHYLHEXANOL FROM PROPYLENE AND SYNTHESIS GAS 992
F.2 CHLOROBENZENES FROM BENZENE AND CHLORINE 995
F.3 METHYL ETHYL KETONE FROM BUTYL ALCOHOL 998
F.4 ACRYLONITRILE FROM PROPYLENE AND AMMONIA 1000
F.5 UREA FROM AMMONIA AND CARBON DIOXIDE 1002
F.6 HYDROGEN FROM FUEL OIL 1005
F.7 CHLORINE RECOVERY FROM HYDROGEN CHLORIDE 1009
F.8 ANILINE FROM NITROBENZENE 1011
Appendix G Equipment Specification (Data) Sheets 1017
Appendix H Typical Shell and Tube Heat Exchanger Tube-sheet Layouts 1029
Index 1034
Author Index 1034
Subject Index 1044

Erscheint lt. Verlag 1.7.2005
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Naturwissenschaften Chemie Technische Chemie
Technik Bauwesen
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-08-049255-X / 008049255X
ISBN-13 978-0-08-049255-1 / 9780080492551
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
84,99