Nutritional Aspects of Osteoporosis -

Nutritional Aspects of Osteoporosis (eBook)

eBook Download: PDF | EPUB
2004 | 2. Auflage
488 Seiten
Elsevier Science (Verlag)
978-0-08-055110-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
103,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is based on presentations given at the Fifth International Symposium on Nutritional Aspects of Osteoporosis held in Lausanne, Switzerland in 2003. Although an often neglected chapter of medical research, the nutritional influences on bone health was a discussed topic at this congress. Also discussed were new insights into the role of proteins, vitamins, potassium, vegetables, food acid load, mineral waters and calcium.

This book is based on presentations given at the Fifth International Symposium on Nutrional Aspects of Osteoporosis held in Lausanne, Switzerland in 2003. Although an often neglected chapter of medical research, the nutritional influences on bone health was a discussed topic at this congress. Also discussed were new insights into the role of proteins, vitamins, potassium, vegetables, food acid load, mineral waters and calcium.
Nutritional Aspects of Osteoporosis is based on presentations given at the Fifth International Symposium on Nutritional Aspects of Osteoporosis held in Lausanne, Switzerland in 2003. Although an often neglected chapter of medical research, the nutritional influences on bone health was a discussed topic at this congress. Also discussed were new insights into the role of proteins, vitamins, potassium, vegetables, food acid load, mineral waters and calcium. Based on presentations given at the Fifth International Symposium on Nutrional Aspects of Osteoporosis held in Lausanne, Switzerland in 2003 Medical research, the nutritional influences on bone health was covered New insights into the role of proteins, vitamins, potassium, vegetables, food acid load, mineral waters and calcium

Cover 1
Contents 6
Sponsors 4
Contributors 20
Preface 26
Part I: Calcium in Childhood 28
Chapter 1. Bone Mineral Density of the Skull and Lower Extremities During Growth and Calcium Supplementation 30
Abstract 30
Introduction 31
Methods 32
Results 33
Discussion 37
Acknowledgments 41
References 41
Chapter 2. Calcium Retention in Adolescence as a Function of Calcium Intake: Influence of Race and Gender 44
Abstract 44
Introduction 44
Methods for Determining Calcium Retention and Metabolism 45
Racial Differences in Calcium Metabolism 46
Gender Differences in Calcium Metabolism 48
Further Directions 49
References 49
Chapter 3. Longitudinal Study of Diet and Lifestyle Intervention on Bone Mineral Gain in School Children and Adolescents: Effects of Asian Traditional Diet and Sitting Style on Bone Mineral 52
Abstract 52
Introduction 53
Subjects and Methods 53
Results 54
Discussion 57
Acknowledgment 59
References 59
Chapter 4. A Co-Twin Calcium Intervention Trial in Premenarcheal Girls: Cortical Bone Effects by Hip Structural Analysis 62
Abstract 62
Introduction 63
Methods 64
Statistical Analyses 66
Results 66
Discussion 68
References 69
Chapter 5. Calcium Carbonate Supplementation is Associated with Higher Plasma IGF-1 in 16- to 18-Year-Old Boys and Girls 72
Abstract 72
Introduction 73
Methods 74
Results 78
Discussion 81
Conclusions 82
Acknowledgments 83
References 83
Part II: Dairy Products, Calcium Metabolism 86
Chapter 6. Nutrients, Interactions, and Foods: The Importance of Source 88
Introduction 88
Calcium and Diet Quality 89
Calcium and Protein 92
Phosphorus and Calcium 94
Conclusion 101
References 101
Part III: Vitamins, Flavonoids 104
Chapter 7. Vitamin K and Bone Health 106
Abstract 106
Introduction 107
Sites of Vitamin K Action 108
Similarities Between Calcium Metabolism in Bone and Arteries 109
Vitamin K Status and Bone Health 111
Vitamin K Status and Cardiovascular Health 112
Vitamin K Intervention Studies 113
Dietary Vitamin K Requirements for Bone and Vascular Health 114
Safety and Potential Adverse Side Effects of Vitamin K Supplements 115
References 116
Chapter 8. Dietary Vitamin A is Negatively Related Density in Postmenopausal Woment to Bone Mineral 120
Abstract 120
Introduction 121
Methods 122
Results 125
Discussion 129
Summary and Conclusions 133
Acknowledgments 133
References 133
Chapter 9. Hesperidin, a Citrus Flavanone, Improves Bone Acquisition and Prevents Skeletal Impairment in Rats 136
Abstract 136
Introduction 137
Methods 139
Results 142
Discussion 146
References 150
Chapter 10. Vitamin B-Complex, Methylenetetrahydrofolate Reductase Polymorphism and Bone: Potential for Gene-Nutrient Interaction 154
Abstract 154
Introduction 155
What is the Role of Methylene Tetrahydrofolate Reductase (MTHFR) Enzyme? 155
MTHFR Polymorphism 156
Vitamin B-Complex 159
Conclusions 162
References 162
Part IV: Nutrition and Bone Health Miscellaneous 166
Chapter 11. A Placebo Controlled Randomized Trial of Chromium Picolinate Supplementation on Indices of Bone and Calcium Metabolism in Healthy Women 168
Abstract 168
Subjects 171
Methods 171
Result 173
Discussion 174
Acknowledgments 177
References 177
Chapter 12. Nutrition and Teeth 180
Abstract 180
Introduction 181
Oral Bone Loss and Systemic Bone Mineral Density 181
Nutrition, Periodontal Disease and Tooth Loss 183
Relationship of Calcium, Vitamin D, and Phosphorus to Periodontal Disease and Tooth Loss 185
Conclusions 188
Summary 189
References 189
Chapter 13. Cognitive Dietary Restraint, Cortisol and Bone Density in Normal-Weight Women: Is There a Relationship? 192
Abstract 192
Introduction 193
Possible Mechanism 194
Assessment of Dietary Restraint 194
Associations Between Dietary Restraint and Menstrual Disturbances 195
Associations Between Subclinical Menstrual Disturbances and Bone Loss 199
Associations Between Dietary Restraint and Cortisol 199
Association Between Dietary Restraint and Bone 200
Summary 202
Acknowledgments 202
References 202
Part V: Vitamin D„First Part 206
Chapter 14. Functions of Vitamin D: Importance for Prevention of Common Cancers, Type 1 Diabetes and Heart Disease 208
Evolution of Vitamin D 208
Photosynthesis and Regulation of Previtamin D3 209
Vitamin D and Bone Health 210
Metabolism and Biologic Functions of Vitamin D 210
Prevalence and Consequences of Vitamin D Deficiency on Bone Health 213
Other Health Consequences of Vitamin D Deficiency: Increased Risk of Autoimmune Diseases, Solid Tumors, and Cardiovascular Heart Disease 216
Clinical Applications for the Antiproliferative Activity of l,25(OH)2D3 and its Analogs 220
Prevention and Treatment of Vitamin D Deficiency 221
Conclusion 224
Acknowledgment 225
References 225
Chapter 15. Evidence for the Breakpoint of Normal Serum 25-Hydroxyvitamin D: Which Level Is Required in the Elderly? 230
Introduction 230
Assessing the Required Serum 25(OH)D Concentration 231
Evidence from Epidemiological and Intervention Studies 232
The Influence of Calcium Intake on Serum PTH and Vitamin D Metabolism 233
Staging of Vitamin D Deficiency 234
Conclusion 234
References 235
Chapter 16. What is the Optimal Amount of Vitamin D for Osteoporosis? 238
Introduction 238
Vitamin D and Osteoporosis 240
Dosage Considerations 242
Hormonal l,25(OH)2D is not an Alternative to Nutritional Vitamin D 244
Summary 246
References 247
Part VI: Vitamin D„Second Part 252
Chapter 17. Serum 25-Hydroxyvitamin D and the Health of the Calcium Economy 254
Introduction 254
Studies of Calcium Absorption 255
Osteoporotic Fractures 258
Comment 259
References 259
Chapter 18. Defining Optimal 25-Hydroxyvitamin D Levels in Younger and Older Adults Based on Hip Bone Mineral Density 262
Abstract 262
PTH Versus BMD in Threshold Assessment for Optimal 25-OHD Levels 263
Rationale for Assessment of Optimal 25-OHD in the Non-White Population 264
Methods Applied to Study the Association Between 25-OHD and BMD in a Population-Based Sample 264
Results 265
Discussion 267
References 269
Chapter 19. Vitamin D Supplementation in Postmenopausal Black Women Improves Calcium Homeostasis and Bone Turnover in Three Months 272
Abstract 272
Introduction 273
Methods 274
Results 275
Discussion 277
Acknowledgment 278
References 278
Chapter 20. Adherence to Vitamin D Supplementation in Elderly Patients After Hip Fracture 280
Abstract 280
Introduction 281
Patients and Methods 281
Results 283
Discussion 283
Conclusion 285
References 286
Chapter 21. Vitamin D Round Table 290
Introduction 290
What is the Optimal Level of 25(OH)D for the Skeleton and Why? 291
How Much Vitamin D3 is Needed to Reach the Optimal Level of 25(OH)D? 293
References 295
Part VII: Acid Load From Food„First Part 298
Chapter 22. Effects of Diet Acid Load on Bone Health 300
Abstract 300
Determinants of the Setpoint at which Blood Acidity and Plasma Bicarbonate Concentration are Regulated in Normal Subjects 301
Chronic Metabolic Acidosis and Bone Wasting 306
Plasma Acid-Base Balance and Diet Acid Load in Humans 308
Crossing the Neutral Zone 315
Implications for Further Research 317
Acknowledgments 317
References 317
Chapter 23. Effect of Various Classes of Foodstuffs and Beverages of Vegetable Origin on Bone Metabolism in the Rat 324
Abstract 324
Materials and Methods 326
Results and Discussion 329
What Should We Eat? 336
References 338
Chapter 24. A Role for Fruit and Vegetables in Osteoporosis Prevention? 342
Abstract 342
Introduction 343
Importance of Acid-Base Homeostasis to Optimum Health 343
A Link Between Acid-Base Maintenance and Skeletal Integrity? 344
Acidity of Foods and Skeletal Health: Concept of Potential Renal Acid Loads 345
Positive Link Between Fruit and Vegetables, Alkali, and Bone Health: A Review of Current Evidence 346
Concept of NEAP and its Potential Impact on the Skeleton 348
Calcium/Alkali Supplements and Optimum Bone Health 351
Fruit and Vegetables and Bone: Exploring Other Important Factors 351
Concluding Remarks 351
Acknowledgments 352
References 352
Part VIII: Acid Load From Food„Second Part 356
Chapter 25. The Ovine Model for the Study of Dietary Acid Base, Estrogen Depletion and Bone Health 358
Abstract 358
Introduction 359
Background and Significance 359
The Influence of Dietary Strong Ions 360
Determination of Dietary Acid Load 363
The Dairy Connection 365
Preliminary Studies 365
Effect of a Diet Low in Cation-Anion Balance on Bone Mineral Density in Mature Ovariectomized Ewes 366
Conclusion 372
Acknowledgments 372
References 373
Chapter 26. The Natural Dietary Potassium Intake of Humans: The Effect of Diet-Induced Potassium-Replete, Chloride-Sufficient, Chronic Low-Grade Metabolic Alkalosis, or Stone Age Diets for the 21st Century 376
Abstract 376
Ancestral Dietary Patterns 377
Ancestral Potassium Intakes 385
Acid-Base Relationship to Bone Health and Bone Mineral Density 387
Conclusions 388
Implications for Further Research 388
Acknowledgments 389
References 389
Part IX: Protein 394
Chapter 27. N-Acetyl Cysteine Supplementation of Growing Mice: Effects on Skeletal Size, Bone Mineral Density, and Serum IGF-I 396
Abstract 396
Introduction 397
Materials and Methods 398
Results 399
Discussion 402
References 403
Chapter 28. Dietary Protein Intakes and Bone Strength 406
Introduction 406
Dietary Protein and Bone Mass Gain 407
Dietary Protein and Bone Mineral Mass 408
Dietary Protein and Bone Homeostasis 411
Effects of Correcting Protein Insufficiency 415
Dietary Protein and Fracture Risk 416
Conclusions 417
Acknowledgments 418
References 418
Chapter 29. Dietary Protein and the Skeleton 426
Abstract 426
Dietary Protein and Serum IGF-1 427
Protein and Acid-Base Balance 428
Protein and Urine Calcium Excretion 429
Protein and Calcium Absorption 429
Dietary Protein and Bone Turnover 430
Protein, Bone Loss, and Fractures 430
Potential Impact of Calcium Intake on Link Between Protein and Bone 432
References 433
Part X: Protein„Mineral Water 438
Chapter 30. Milk Basic Protein Increases Bone Mineral Density and Improves Bone Metabolism in Humans 440
Abstract 440
Introduction 441
Human Study 1 443
Human Study 2 450
Conclusion 453
References 454
Chapter 31. Dietary Balance in Physically Active and Inactive Girls 458
Abstract 458
Introduction 459
AIMS 460
Subjects and Methods 460
Results 460
Discussion 462
References 464
Chapter 32. Mineral Waters: Effects on Bone and Bone Metabolism 466
Introduction 466
Calcium 467
Sodium 468
Sulfates 469
Carbonated Beverages 469
Fluoride 469
Acid Load 470
Alkaline Load 471
Potassium 472
Conclusions 472
References 472
Index 476

Contributors


Numbers in parentheses indicate the pages on which the authors’ contributions begin.

Cheryl L. Ackert-Bicknell     (369) The Jackson Laboratory, Bar Harbor, Maine

Monica Adhikari     (141) Human Nutrition Unit, University of Sheffield, Northern General Hospital, Sheffield, United Kingdom

Barbara Ambrose     (245) Clinical Research, Helen Hayes Hospital, West Haverstraw, New York

Patrick Ammann     (279) Division of Bone Diseases, WHO Collaborating Center for Osteoporosis Prevention, Department of Rehabilitation and Geriatrics, University Hospital, Geneva, Switzerland

Seiichiro Aoe     (413) Department of Home Economics, Otsuma Women’s University, Chiyoda-ku, Tokyo, Japan

Nancy Badenhop-Stevens     (3) Osteoporosis Prevention and Treatment Center, Bone and Mineral Metabolism Laboratory, and Department of Statistics, Columbus, Ohio

Susan I. Barr     (165) Department of Agricultural Sciences, University of British Columbia, Vancouver, British Columbia, Canada

Adam Baxter-Jones     (431) College of Kinesiology, University of Saskatchewan, Saskatoon, Canada

Wesley G. Beamer     (369) The Jackson Laboratory, Bar Harbor, Maine

Thomas Beck     (35) Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland

Heike A. Bischoff-Ferrari     (235) Division of Aging and Robert B. Brigham Arthritis and Musculoskeletal Diseases Clinical Research Center, Brigham and Women’s Hospital, Boston, Massachusetts

Jackie Bishop     (431) Centre for Nutrition and Food Safety, School of Biomedical and Life Sciences, University of Surrey, Guildford, United Kingdom

Aubrey Blumsohn     (141) Bone Metabolism Group, University of Sheffield, Northern General Hospital, Sheffield, United Kingdom

Jean-Philippe Bonjour     (279) Division of Bone Diseases, WHO Collaborating Center for Osteoporosis Prevention, Department of Rehabilitation and Geriatrics, University Hospital, Geneva, Switzerland

Rhonda A. Brownbill     (93) School of Allied Health, University of Connecticut, Storrs, Connecticut

Peter Burckhardt     (439) Department of Medicine, CHUV, Lausanne, Switzerland

Melissa Cameron     (35) Cancer Council, Victoria, Australia

Thierry Chevalley     (279) Division of Bone Diseases, WHO Collaborating Center for Osteoporosis Prevention, Department of Rehabilitation and Geriatrics, University Hospital, Geneva, Switzerland

T.J. Cole     (45) Centre for Paediatric Epidemiology and Biostatistics, Institute of Child Health, London, United Kingdom

Cyrus Cooper     (431) MRC Environmental Epidemiology Unit, Southampton General Hospital, Southampton, United Kingdom

Felicia Cosman     (245) Clinical Research, Helen Hayes Hospital, West Haverstraw, New York

Véronique Coxam     (109) Unité des Maladies Métaboliques et Micronutriments, Groupe Ostéoporose, INRA de Theix, France

Neal E. Craft     (93) Craft Technologies, Inc., Wilson, North Carolina

Zeljka Crncevic-Orlic     (3) Department of Endocrinology, University of Rijeka, Rijeka, Croatia

Bess Dawson-Hughes     (235, 263, 399) Bone Metabolism Laboratory, Jean Mayer U.S.D.A. Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts

Richard Eastell     (141) Bone Metabolism Group, University of Sheffield, Northern General Hospital, Sheffield, United Kingdom

Mark Forwood     (35) Anatomy and Developmental Biology, The University of Queensland, Brisbane, Australia

Lynda A. Frassetto     (273, 349) Department of Medicine and General Clinical Research Center, University of California, San Francisco, California

Harold C. Furr     (93) Craft Technologies, Inc., Wilson, North Carolina

Fiona Ginty     (45) Elsie Widdowson Laboratory, MRC Human Nutrition Research, Cambridge, United Kingdom

Prem Goel     (3) Osteoporosis Prevention and Treatment Center, Bone and Mineral Metabolism Laboratory, and Department of Statistics, Columbus, Ohio

Eun-Jeong Ha     (3) Osteoporosis Prevention and Treatment Center, Bone and Mineral Metabolism Laboratory, and Department of Statistics, Columbus, Ohio

Mizuho Hara     (25) Research Laboratory, Tsuji Academy of Nutrition, Osaka, Japan

Robert P. Heaney     (61, 227, 263) University Chair, Creighton University, Omaha, Nebraska

Kenji Hirota     (25) Department of Obstetrics and Gynecology, Nissei Hospital, Osaka, Japan

Takako Hirota     (25) Research Laboratory, Tsuji Academy of Nutrition, Osaka, Japan

Michael F. Holick     (181, 263) Department of Endocrinology, Boston University School of Medicine, Boston, Massachusetts

Marie-Noëlle Horcajada     (109) Unité des Maladies Métaboliques et Micronutriments, Groupe Ostéoporose, INRA de Theix, France

Jasminka Z. Ilich     (93) School of Allied Health, University of Connecticut, Storrs, Connecticut

S. Ish-Shalom     (253) Metabolic Bone Diseases Unit, Rambam Medical Center and The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel

Akira Itabashi     (413) Department of Clinical Laboratory Medicine, Saitama Medical School, Saitama, Japan

S. Jones     (45) Elsie Widdowson Laboratory, MRC Human Nutrition Research, Cambridge, United Kingdom

Susan Kantor     (35) Department of Medicine, Royal Melbourne Hospital, University of Melborne, Victoria, Australia

Elizabeth A. Krall     (153) Department of Health Policy and Health Services Research, Boston University School of Dental Medicine, Boston, Massachusetts

Tomoko Kusu     (25) Research Laboratory, Tsuji Academy of Nutrition, Osaka, Japan

A. Laidlaw     (45) Elsie Widdowson Laboratory, MRC Human Nutrition Research, Cambridge, United Kingdom

John D. Landoll     (3) Osteoporosis Prevention and Treatment Center, Bone and Mineral Metabolism Laboratory, and Department of Statistics, Columbus, Ohio

Bin Li     (3) Osteoporosis Prevention and Treatment Center, Bone and Mineral Metabolism Laboratory, and Department of Statistics, Columbus, Ohio

Robert Lindsay     (245) Clinical Research, Helen Hayes Hospital, West Haverstraw, New York

Paul Lips     (203, 263) Department of Endocrinology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands

H.M. Macdonald     (127) Osteoporosis Research Unit, Department of Medicine and Therapeutics, University of Aberdeen, Aberdeen, United Kingdom

Jennifer M. Macleay     (331) College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado

Velimir Matkovic     (3) Osteoporosis Prevention and Treatment Center, Bone and...

PDFPDF (Adobe DRM)
Größe: 21,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 7,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich