Cancer Imaging -  M. A. Hayat

Cancer Imaging (eBook)

Lung and Breast Carcinomas

(Autor)

eBook Download: EPUB | PDF
2007 | 1. Auflage
656 Seiten
Elsevier Science (Verlag)
978-0-08-055365-8 (ISBN)
190,00 € inkl. MwSt
Systemvoraussetzungen
187,09 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This two-volume reference book will present imaging technology currently used in clinics or at experimental stages for diagnosis and/or early detection of various cancers, including anticancer vaccines, surgical techniques, chemotherapy, radiation, and gene therapies. Cancers discussed will include breast, lung, liver, prostate, cervical, brain, gastrointestinal, ovarian, gallbladder, esophageal, head and neck, bronchial, bone, thyroid, pancreatic, lymphoma, melanoma, and multiple myeloma malignancies. Approximately 100 research scientists and clinicians from more than 20 countries will contribute chapters.

. Concentrates on the application of imaging technology to the diagnosis and prognosis of lung and breast carcinomas, the two major world-wide malignancies
. Addresses relationship between radiation dose and image quality
. Discusses the role of molecular imaging in identifying changes for the emergence and progression of cancer at the cellular and/or molecular levels
With cancer-related deaths projected to rise to 10.3 million people by 2020, the need to prevent, diagnose, and cure cancer is greater than ever. Cancer Imaging presents readers with the most up-to-date imaging instrumentation, general and diagnostic applications for various cancers, with an emphasis on lung and breast carcinomas--the two major worldwide malignancy types. This book discusses the various imaging techniques used to locate and diagnose tumors, including ultrasound, X-ray, color Doppler sonography, PET, CT, PET/CT, MRI, SPECT, diffusion tensor imaging, dynamic infrared imaging, and magnetic resonance spectroscopy. It also details strategies for imaging cancer, emphasizing the importance of the use of this technology for clinical diagnosis. Imaging techniques that predict the malignant potential of cancers, response to chemotherapy and other treatments, recurrence, and prognosis are also detailed. Concentrates on the application of imaging technology to the diagnosis and prognosis of lung and breast carcinomas, the two major worldwide malignancies Addresses the relationship between radiation dose and image quality Discusses the role of molecular imaging in identifying changes for the emergence and progression of cancer at the cellular and/or molecular levels

Front Cover 1
Cancer Imaging: Lung and Breast Carcinomas 4
Copyright Page 5
Contents 8
Contributors 30
Preface 40
Selected Glossary 42
Introduction 50
Part I: Instrumentation 54
Chapter 1.1 Strategies for Imaging Biology in Cancer and Other Diseases 56
Introduction 56
Imaging Strategies 57
Preclinical Applications 60
Imaging Strategies for Clinical Applications 63
Acknowledgments 65
References 65
Chapter 1.2 Synthesis of 18F-fluoromisonidazole Tracer for Positron Emission Tomography 68
Introduction 68
Methods 69
Results and Discussion 72
References 74
Chapter 1.3 Radiation Hormesis 76
Introduction 76
Hormesis 76
Mechanisms 77
Animal Studies 77
Human Studies 77
Controversy 78
References 79
Part II: General Imaging Applications 80
Chapter 2.1 Molecular Imaging in Early Therapy Monitoring 82
Introduction 82
The Place of Early Therapy Monitoring in the Management of Cancer 82
What Can be Expected from Positron Emission Tomography Imaging? 83
F-18-FDG in Therapy Monitoring 83
References 89
Chapter 2.2 Positron Emission Tomography in Medicine: An Overview 92
Introduction 92
Positron Emission Tomography in Oncology 92
Positron Emission Tomography in Lung and Breast Cancer 94
Positron Emission Tomography in Brain Imaging 95
Positron Emission Tomography in Cardiac Imaging 96
Positron Emission Tomography in Infection and Inflammation 96
Cell Proliferation Agents 96
Hypoxia Positron Emission Tomography Imaging 97
Peptide and Protein Positron Emission Tomography Tracers 97
References 97
Chapter 2.3 Radiation Dose and Image Quality 98
Introduction 98
Radiation Dose 99
Image Quality 101
X-ray Beam Interactions 102
Radiographic Imaging 103
Fluoroscopy 106
Radiation Quality 107
Scattered Radiation 108
Optimization of Technique in Fluoroscopy 109
Computed Tomography 109
Radionuclide Imaging 111
Conclusions 113
References 114
Chapter 2.4 Contrast Agents for Magnetic Resonance Imaging: An Overview 116
Introduction 116
Relaxation Agents 117
Chemical Exchange-dependent Saturation Transfer Agents 123
Nonproton Contrast Agents 126
Conclusions 128
References 129
Chapter 2.5 Whole-body Computed Tomography Screening 132
Introduction 132
What Is Whole-body Computed Tomography Screening? 132
How Is it Done? Standards, Protocols, and Informed Consent 133
What Is Found on Whole-body Computed Tomography Screening? 133
Other Findings on Whole-body Computed Tomography Screening 134
Other Miscellaneous Conditions 135
Risks and Costs of Positive Results 135
Analyzing the Rationale of Whole-body Computed Tomography Screening 136
Analogies to Existing Screening Practices 136
Distrust of Authority and Self-empowerment 137
Is Proof of Value Necessary? 137
Is Whole-body Computed Tomography Screening Truly Screening? 138
Psychological Implications 139
Variability of Rate of Positive Results 139
Enhancement of Radiology's Role in Medicine 140
Entrepreneurial Value of Screening 140
References 141
Chapter 2.6 Whole-body - 8F-fluorodeoxyglucose- Positron Emission Tomography: Is It Valuable for Health Screening? 142
Introduction 142
Current Positron Emission Tomography Screening Programs 144
Considerations on Screening Programs 144
18F-fluorodeoxyglucose-Positron Emission Tomography 145
References 146
Chapter 2.7 Staging Solid Tumors with 18F-fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography 148
Introduction 148
PET/CT Imaging Protocols for Staging Solid Tumors 149
Staging Solid Tumors with FDG-PET/CT 149
References 155
Chapter 2.8 Laser Doppler Perfusion Imaging: Clinical Diagnosis 156
Introduction 156
Review of Laser Doppler Perfusion Imaging 157
Some Past and Recent LDPI Applications 159
Potential Integration of LDPI in Cancer Diagnosis 163
Conclusions 165
Acknowledgment 165
References 165
Chapter 2.9 Dynamic Sonographic Tissue Perfusion Measurement with the PixelFlux Method 168
Introduction 168
Tumor Perfusion Evaluation—State of the Art 168
Dynamic Tissue Perfusion Measurement (PixelFlux) 169
Use of Contrast Enhancers 171
Application 171
Conclusions and Outlook 176
References 177
Chapter 2.10 Immuno-Positron Emission Tomography 180
Introduction 180
Diagnostic and Therapeutic Applications of Monoclonal Antibodies 181
Therapy Planning with Monoclonal Antibodies 181
Immuno-PET: Imaging and Quantification 182
Clinical PET Imaging Systems 183
Positron Emitters for Immuno-Pet 183
Experience with Preclinical Immuno-Pet 184
Experience with Clinical Immuno-Pet 186
Acknowledgments 189
References 189
Chapter 2.11 Role of Imaging Biomarkers in Drug Development 192
Introduction 192
Biomarkers and Surrogate Markers 193
Imaging Biomarkers 193
Conclusions 209
References 209
Part III: Lung Carcinoma 214
Chapter 3.1 The Role of Imaging in Lung Cancer 216
Introduction 216
The International System for Staging Lung Cancer 216
The Role of Imaging in Lung Cancer Staging 218
Implications of Imaging for Lung Cancer Screening 221
Conclusions 222
References 222
Chapter 3.2 Lung Cancer Staging: Integrated 18F-fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography and Computed Tomography Alone 224
Introduction 224
Results Obtained by Previous Studies 225
Problems and Their Solutions 227
Potential Advancements 228
References 228
Chapter 3.3 Computed Tomography Screening for Lung Cancer 230
Introduction 230
Prior Screening Studies 230
Recommendations and Controversy Resulting from Prior Studies 231
The Early Lung Cancer Action Project Paradigm for Evalution of Screening 232
The Early Lung Cancer Action Project 233
Computed Tomography Screening in Japan 234
The New York Early Lung Cancer Action Project 234
International Conferences on Screening for Lung Cancer 234
International Early Lung Cancer Action Program 235
National Cancer Institute Conferences 235
Performance of Computed Tomography Screening for Lung Cancer 235
Updated Recommendations Regarding Screening 238
Problems Identified in Performing Randomized Screening Trials 238
References 241
Chapter 3.4 Lung Cancer: Role of Multislice Computed Tomography 244
Introduction 244
Multislice Computed Tomography Technique for Diagnosis and Staging of Bronchogenic Carcinoma 245
Multislice Computed Tomography Staging of Bronchogenic Carcinoma 245
T-staging 245
N-staging 247
M-staging 248
Assessment of Response to Treatment and Tumor Recurrence 248
Virtual Bronchoscopy 249
Conclusions 249
References 249
Chapter 3.5 Surgically Resected Pleomorphic Lung Carcinoma: Computed Tomography 252
Intoduction 252
Pleomorphic Carcinoma of the Lung 252
References 255
Chapter 3.6 Lung Cancer: Low-dose Helical Computed Tomography 256
Introduction 256
Materials and Methods 257
Results 257
Discussion 258
References 259
Chapter 3.7 Lung Cancer: Computer-aided Diagnosis with Computed Tomography 262
Intoduction 262
Materials and Methods 263
Results 264
Discussion 265
Conclusions 266
References 266
Chapter 3.8 Stereotactic Radiotherapy for Non-small Cell Lung Carcinoma: Computed Tomography 268
Introduction 268
Definition of Stereotactic Radiotherapy 269
Clinical Status of Stereotactic Radiotherapy for Early-Stage Lung Carcinoma 269
The Significance of Computed Tomography Imaging for Stereotactic Radiotherapy 269
Attenuation of Lung Carcinoma 271
Limits of Computed Tomography for Evaluating Lung Tumors 273
Cone Beam Computed Tomography 274
Evaluation of the Treatment Effect and Differentiation between Inflammatory Change and a Recurrent Mass 275
Computed Tomography Evaluation of the Tumor Response and Progression 278
References 282
Chapter 3.9 Thin-section Computed Tomography Correlates with Clinical Outcome in Patients with Mucin-producing Adenocarcinoma of the Lung 284
Introduction 284
Materials and Methods 285
Results 286
Discussion 287
Acknowledgments 288
References 288
Chapter 3.10 Non-small Cell Lung Carcinoma: 18F-fluorodeoxyglucose-Positron Emission Tomography 290
Introduction 290
Role of FDG-PET on Diagnosing Lung Cancer 291
Preoperative PET Staging of Non-small Cell Lung Cancer 292
Role of PET in Therapeutic Response Assessment in NSCLC 296
Use of FDG-PET for Restaging Following Definitive Treatment of NSCLC 297
A Philosophical Perspective on the Quantitative Analysis of FDG Uptake in NSCLC 297
Use of Hybrid PET-CT Images in Staging 299
Conclusions 299
References 299
Chapter 3.11 Evaluating Positron Emission Tomography in Non-small Cell Lung Cancer: Moving Beyond Accuracy to Outcome 302
Introduction 302
Diagnostic Accuracy of Positron Emission Tomography in Non-small Cell Lung Cancer 303
The Framework 304
Conclusions 308
References 308
Chapter 3.12 Non-small Cell Lung Cancer: False-positive Results with 18F-fluorodeoxyglucose-Positron Emission Tomography 310
Introduction 310
Physiological High Uptake of 18F-FDG in Different Tissues 311
High Metabolic Activity after Treatment 314
Conclusions 316
References 316
Chapter 3.13 Oxygen-enhanced Proton Magnetic Resonance Imaging of the Human Lung 320
Introduction 320
Respiratory Physiology 321
Theory of Oxygen-enhanced Imaging 322
Oxygen-enhanced Imaging in Volunteers and Patients 329
Conclusions 330
References 331
Chapter 3.14 Detection of Pulmonary Gene Transfer Using Iodide-124/Positron Emission Tomogrpahy 334
Introduction 334
Pulmonary Applications of Gene Therapy 334
Gene Therapy for Inherited Lung Diseases 335
Gene Therapy for Lung Cancer 336
Gene Delivery Vehicles and Vectors 336
Molecular Imaging of Pulmonary Gene Transfer 337
Reporter Gene Systems 338
Herpes Simplex Virus-1 Thymidine Kinase (HSV1-TK) 339
Sodium Iodide Symporter 340
Considerations in PET Imaging of Pulmonary Gene Transfer 341
Acknowledgements 343
References 343
Chapter 3.15 Lung Cancer with Idiopathic Pulmonary Fibrosis: High-resolution Computed Tomography 348
Introduction 348
Prevalence of Lung Cancer in Idiopathic Pulmonary Fibrosis 348
Pathogenesis of Lung Cancer in Idiopathic Pulmonary Fibrosis 349
Clinical Features 349
Chest Radiograph 349
Computed Tomography and High-resolution Computed Tomography Findings 349
References 351
Part IV: Breast Carcinoma 352
Chapter 4.1 Categorization of Mammographic Density for Breast Cancer: Clinical Significance 354
Introduction 354
Breast Density by Mammography 354
Clinical Applications of Breast- density Category 356
Analytic Considerations 357
References 359
Chapter 4.2 Breast Tumor Classification and Visualization with Machine-learning Approaches 362
Introduction 362
Learning Algorithms 365
Monitoring Tumor Development 370
Summary and Outlook 374
Acknowledgements 374
References 374
Chapter 4.3 Mass Detection Scheme for Digitized Mammography 378
Introduction 378
Basic Architecture of Mass Detection Schemes 378
Evaluation and Application of Commercial Computer-aided Detection Systems 384
New Developments in Mass Detection Schemes 385
References 389
Chapter 4.4 Full-field Digital Phase-contrast Mammography 392
Introduction 392
Historical Background of the Phase-contrast Technique 393
Absorption Contrast and Phase Contrast 393
Edge Effect Due to Phase Contrast 394
Realization of the Phase-contrast Technique in Mammography 394
Design of Digital Image Acquisition and Output 394
Magnification-demagnification Effect in Digital Mammography 395
Sharpness 395
Image Noise 396
Improvement of Image Quality by the Magnification-demagnification Effect 396
Improvement of Image Sharpness in Digital Full-field PCM 396
Clinical Images 397
Clinical Experience 398
Future Development 398
Acknowledgements 400
References 400
Chapter 4.5 Full-field Digital Mammography versus Film-screen Mammography 402
Introduction and Historical Perspective 402
Physical Performance of Digital Compared to Film-screen Mammography 403
Phantom Studies Comparing Full-field Digital Mammography and Film-screen Mammography 403
Simulated Microcalcifications 404
Clinical or Diagnostic Digital Mammography 406
Full-field Digital Mammography and Film-screen Mammography in Screening 407
Oslo I and II Studies 408
Digital Mammography Imaging Screening Trial 408
Financial Considerations of Digital Mammography 409
Radiation Dose Considerations 409
References 410
Chapter 4.6 Use of Contrast-enhanced Magnetic Resonance Imaging for Detecting Invasive Lobular Carcinoma 412
Introduction 412
Incidence 412
Presentation 412
Pathology 413
Mammography 413
Ultrasound 413
Goal of MRI in the Assessment of Invasive Lobular Carcinoma 414
Conclusions 417
References 417
Chapter 4.7 Axillary Lymph Node Status in Breast Cancer: Pinhole Collimator Single- Photon Emission Computed Tomography 420
Introduction 420
99mTc-tetrofosmin Pinhole–Single Photon Emission Computed Tomography 422
Results and Discussion 422
Conclusions 424
References 425
Chapter 4.8 Detection of Small-size Primary Breast Cancer: 99mTc-tetrofosmin Single Photon Emission Computed Tomography 428
Introduction 428
The Planar and SPECT Scintimammography Method 429
Results and Discussion 430
Conclusions 433
References 434
Chapter 4.9 Microcalcification in Breast Lesions" Radiography and Histopathology 436
Introduction 436
Histopathology 436
Detection 437
Classification of Breast Calcifications 438
Breast Imaging-Reporting and Data System 439
Work-up of Breast Calcifications 442
Summary 444
References 444
Chapter 4.10 Benign and Malignant Breast Lesions" Doppler Sonography 446
Introduction 446
Doppler Ultrasound Technique in Breast Diseases 447
Breast Doppler Limitations 447
Differentiation of Benign and Malignant Solid Breast Lesions 448
Breast Cancer Prognosis 450
Assessment of Lymph Node Involvement 450
Recurrence versus Scar in Operated Patients 451
Treatment Monitoring 451
Conclusions 451
References 452
Chapter 4.11 Response to Neoadjuvant Treatment in Patients with Locally Advanced Breast Cancer: Color-Doppler Ultrasound Contrast Medium (Levovist) 454
Introduction 454
Materials and Methods 454
Results 456
Discussion 456
References 459
Chapter 4.12 Magnetic Resonance Spectroscopy of Breast Cancer: Current Techniques and Clinical Applications 460
Introduction 460
Technique 461
Clinical Applications 463
Acknowledgement 467
References 467
Chapter 4.13 Breast Scintigraphy 470
Introduction 470
Breast Scintigraphy 470
Dedicated Imaging Systems 472
Clinical Indications of Breast Scintigraphy or Scintimammography 474
References 474
Chapter 4.14 Primary Breast Cancer: False-negative and False-positive Bone Scintigraphy 476
Introduction 476
Search Strategy and Selection Criteria 476
Procedures and Technical Aspects of Bone Scan 476
Clinical Applications in Breast Cancer 480
Pitfalls of Bone Scan Encountered in Breast Cancer Patients and their Solutions with Potential Advances 482
References 484
Chapter 4.15 Improved Sensitivity and Specificity of Breast Cancer Thermo- graphy 488
Introduction 488
Image Analysis Tools 489
Data Acqusition 492
Designed Integrated Approach 493
Results and Discussion 494
Conclusions and Future Trends 495
Acknowledgements 496
References 496
Chapter 4.16 Optical Mammography 498
Introduction 498
Sources of Intrinsic Optical Contrast in Breast Tissue 499
Principles of Optical Mammography 500
Continuous-wave Approaches: Dynamic Measurements and Spectral Information 501
Time-resolved Approaches 501
Interpretation of Optical Mammograms 503
Prospects of Optical Mammography 505
Acknowledgements 506
References 506
Chapter 4.17 Digital Mammography 508
Introduction 508
Technical Advantages of Digital Mammography 508
Technologies Used for Digital Mammography 509
Clinical Advantages of Digital Mammography 509
Advanced Applications of Digital Mammography 510
References 511
Chapter 4.18 Screening for Breast Cancer in Women with a Familial or Genetic Predisposition: Magnetic Resonance Imaging versus Mammography 512
Introduction 512
Magnetic Resonance Imaging Screening Studies 514
Results 514
Discussion 515
References 516
Chapter 4.19 Mammographic Screening: Impact on Survival 518
Introduction 518
Why Screening Works 518
Screening Effectiveness 518
Cancers Become More Lethal as they Increase in Size 519
Present and Future Life-saving Impact of Screening 519
Life-saving Potential of Screening 520
Tumor Size and Survival 520
False-positives 521
How is Screening Actually Used 521
Present Status of Breast Cancer Screening 522
References 523
Chapter 4.20 False-positive Mammography Examinations 526
Introduction 526
Definitions 526
Current Estimates of False-positive Rates in the United States and International Guidelines 527
Cumulative False-positive Rates 528
Predictors of False-positive Mammograms 528
Recall Rates in the United States versus Other Countries 534
Acknowledgment 536
References 536
Chapter 4.21 Breast Dose in Thoracic Computed Tomography 540
Introduction 540
Methodology 541
Results 541
Discussion 542
References 545
Chapter 4.22 Absorbed Dose Measurement in Mammography 546
Introduction 546
Estimation of Absorbed Dose to the Breast 547
Dosimeters for Indirect Measurements 551
Dosimeters for Direct in vivo Measurements 551
Thermoluminescence Detectors 552
Summary and Conclusions 553
References 553
Chapter 4.23 Metastatic Choriocarcinoma to the Breast: Mammography and Color Doppler Ultrasound 556
Introduction 556
Mammography 557
Ultrasonography and Color Doppler 557
Tissue Diagnosis 559
References 560
Chapter 4.24 Detection and Characterization of Breast Lesions: Color-coded Signal Intensity Curve Software for Magnetic Resonance–based Breast Imaging 562
Introduction 562
Computer-aided Diagnosis: Features and Applications 564
Computer-aided Detection for Breast Magnetic Resonance Imaging 565
Conclusions 568
References 570
Chapter 4.25 Detection of Breast Malignancy: Different Magnetic Resonance Imaging Modalities 572
Introduction 572
Major Breast Imaging Modalities 572
Breast Dynamic Contrast-enhanced Magnetic Resonance Imaging 573
Breast 1H Magnetic Resonance Spectroscopy 576
Breast T2*-Weighted Perfusion Magnetic Resonance Imaging 578
References 579
Chapter 4.26 Breast Lesions: Computerized Analysis of Magnetic Resonance Imaging 582
Introduction 582
Mechanisms of Functional Imaging using Magnetic Resonance Imaging 583
Interpretation of Contrast-enhanced Magnetic Resonance Imaging 584
Computerized Classification of Features of Enhancement 589
Current Status and Future Role of Computerized Analysis of Breast Magnetic Resonance Imaging 590
References 591
Chapter 4.27 Optical Imaging Techniques for Breast Cancer 592
Introduction 592
Tomographic Imaging 593
Nonspecific Contrast Agents (Perfusion-type Contrast Agents) 593
Fluorochromes with Molecular Specificity 595
Outlook 597
References 597
Chapter 4.28 Magnetic Resonance Imaging: Measurements of Breast Tumor Volume and Vascularity for Monitoring Response to Treatment 600
Introduction 600
Imaging Considerations 601
Imaging Postprocessing 602
Assessing Treatment Response 603
Conclusions 604
Acknowledgements 605
References 605
Chapter 4.29 Defining Advanced Breast Cancer: 18F-fluorodeoxyglucose-Positron Emission Tomography 608
Introduction 608
Positron Emission Tomography Principles 609
Axillary Node Staging 610
Detection of Locoregional and Distant Recurrences 610
Response to Therapy 613
Impact of FDG-PET on Patient Management 614
Beyond FDG: Future Applications of PET to Breast Cancer 615
References 616
Chapter 4.30 Leiomyoma of the Breast Parenchyma: Mammographic, Sonographic, and Histopathologic Features 620
Introduction 620
Mammographic Appearance 621
Sonographic Appearance 621
References 623
Chapter 4.31 Detection of Breast Cancer: Dynamic Infrared Imaging 624
Introduction: Infrared and its Detection 624
History of Infrared for Breast Cancer Detection 625
Dynamic Infrared Imaging 626
Mechanism for Breast Cancer Detection with Dynamic Infrared 628
Applications of Dynamic Infrared Imaging 629
Pitfalls of Dynamic Infrared Imaging 630
Conclusion: The Future of Infrared and Dynamic Infrared Imaging for Breast Cancer Detection 631
Acknowledgements 632
References 632
Chapter 4.32 Phyllodes Breast Tumors: Magnetic Resonance Imaging 634
Introduction 634
Magnetic Resonance Imaging 635
Guidelines 636
References 637
Index 638

Erscheint lt. Verlag 25.10.2007
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Medizin / Pharmazie Allgemeines / Lexika
Medizin / Pharmazie Medizinische Fachgebiete Onkologie
Medizin / Pharmazie Medizinische Fachgebiete Radiologie / Bildgebende Verfahren
ISBN-10 0-08-055365-6 / 0080553656
ISBN-13 978-0-08-055365-8 / 9780080553658
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 16,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Entstehung, Progression und Therapie von Krebs

von Christoph Wagener; Oliver Müller

eBook Download (2022)
Thieme (Verlag)
199,99
Entstehung, Progression und Therapie von Krebs

von Christoph Wagener; Oliver Müller

eBook Download (2022)
Thieme (Verlag)
199,99
Handbuch für die Pflegepraxis

von Thomas Kroner; Anita Margulies; Sacha Rothschild …

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
29,99