Handbook on the Physics and Chemistry of Rare Earths -

Handbook on the Physics and Chemistry of Rare Earths (eBook)

Optical Spectroscopy
eBook Download: PDF | EPUB
2011 | 1. Auflage
558 Seiten
Elsevier Science (Verlag)
978-0-08-054858-6 (ISBN)
265,00 € inkl. MwSt
Systemvoraussetzungen
263,52 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Optical spectroscopy has been instrumental in the discovery of many lanthanide elements. In return, these elements have always played a prominent role in lighting devices and light conversion technologies (Auer mantles, incandescent lamps, lasers, cathode-ray and plasma displays). They are also presently used in highly sensitive luminescent bio-analyses and cell imaging. This volume of the Handbook on the Physics and Chemistry of Rare Earths is entirely devoted to the photophysical properties of these elements. It is dedicated to the late Professor William T (Bill) Carnall who has pioneered the understanding of lanthanide spectra in the 1960's and starts with a Dedication to this scientist. The following five chapters describe various aspects of lanthanide spectroscopy and its applications. Chapters 231 presents state-of-the-art theoretical calculations of lanthanide energy levels and transition intensities. It is followed by a review (Chapter 232) on both theoretical and experimental aspects of f-d transitions, a less well known field of lanthanide spectroscopy, yet very important for the design of new optical materials. Chapter 233 describes how confinement effects act on the photophysical properties of lanthanides when they are inserted into nanomaterials, including nanoparticles, nanosheets, nanowires, nanotubes, insulating and semiconductor nanocrystals. The use of lanthanide chelates for biomedical analyses is presented in Chapter 234, long lifetimes of the excited states of lanthanide ions allow the use of time-resolved spectroscopy, which leads to highly sensitive analyses devoid of background effect from the autofluorescence of the samples. The last review (Chapter 235) provides a comprehensive survey of near-infrared (NIR) emitting molecular probes and devices, spanning an all range of compounds, from simple chelates to macrocyclic complexes, heterometallic functional edifices, coordination polymers and other extended structures. Applications ranging from telecommunications to light-emitting diodes and biomedical analyses are assessed.

- Provides a comprehensive look at optical spectroscopy and its applications
- A volume in the continuing authoritative series which deals with the chemistry, materials science, physics and technology of the rare earth elements
Optical spectroscopy has been instrumental in the discovery of many lanthanide elements. In return, these elements have always played a prominent role in lighting devices and light conversion technologies (Auer mantles, incandescent lamps, lasers, cathode-ray and plasma displays). They are also presently used in highly sensitive luminescent bio-analyses and cell imaging. This volume of the Handbook on the Physics and Chemistry of Rare Earths is entirely devoted to the photophysical properties of these elements. It is dedicated to the late Professor William T (Bill) Carnall who has pioneered the understanding of lanthanide spectra in the 1960's and starts with a Dedication to this scientist. The following five chapters describe various aspects of lanthanide spectroscopy and its applications. Chapters 231 presents state-of-the-art theoretical calculations of lanthanide energy levels and transition intensities. It is followed by a review (Chapter 232) on both theoretical and experimental aspects of f-d transitions, a less well known field of lanthanide spectroscopy, yet very important for the design of new optical materials. Chapter 233 describes how confinement effects act on the photophysical properties of lanthanides when they are inserted into nanomaterials, including nanoparticles, nanosheets, nanowires, nanotubes, insulating and semiconductor nanocrystals. The use of lanthanide chelates for biomedical analyses is presented in Chapter 234; long lifetimes of the excited states of lanthanide ions allow the use of time-resolved spectroscopy, which leads to highly sensitive analyses devoid of background effect from the autofluorescence of the samples. The last review (Chapter 235) provides a comprehensive survey of near-infrared (NIR) emitting molecular probes and devices, spanning an all range of compounds, from simple chelates to macrocyclic complexes, heterometallic functional edifices, coordination polymers and other extended structures. Applications ranging from telecommunications to light-emitting diodes and biomedical analyses are assessed.- Provides a comprehensive look at optical spectroscopy and its applications- A volume in the continuing authoritative series which deals with the chemistry, materials science, physics and technology of the rare earth elements

Front cover 1
Handbook on the Physics and Chemistry of Rare Earths 4
Copyright page 5
Preface 6
Dedication to William T. Carnall 12
Contents 30
Contents of Volumes 1–36 32
Index of Contents of Volumes 1–37 42
Chapter 231. First-principles calculations of 4fn -> 4fn-15d transition spectra
Symbols and abbreviations 49
1. Introduction 50
2. Brief review of previous semiempirical and first-principles calculations 51
3. Method for first-principles calculations 57
4. Results of first-principles calculations 62
5. Summary and perspectives 104
Acknowledgements 105
References 105
Chapter 232. 4fn-4fn-15d transitions 108
List of symbols 109
1. Introduction 109
2. Parametrized energy level calculations 110
3. Energy levels of the 4fn-15d configuration 120
4. Other techniques 138
5. Conclusions 141
References 142
Chapter 233. Spectroscopic properties of lanthanides in nanomaterials 146
List of acronyms 147
1. Introduction 147
2. Size effects on the structure of electronic levels 150
3. Confinement on excited-state dynamics 152
4. Spectroscopy of lanthanide ions doped in insulating nanocrystals 159
5. Spectroscopy of lanthanide ions in semiconductor nanocrystals 181
6. Spectroscopy of lanthanides doped in core-shell, nanowires, nanotubes, and other novel nanostructures 198
7. Summary 212
Acknowledgements 213
References 213
Chapter 234. Lanthanide Chelates as Luminescent Labels in Biomedical Analyses 218
List of symbols and acronyms 218
1.Introduction 220
2. Synthesis and luminescent properties of lanthanide chelates 223
3. Bioconjugation of lanthanide chelate labels 235
4. Principle of time-resolved luminescence measurement using lanthanide labels 237
5. Fluorescence resonance energy transfer (FRET) and fluorescence quenching for lanthanide labels 239
6. Time-resolved fluorometric immunoassay 242
7. Applications targeting nucleic acids 244
8. Applications targeting cells 253
9. Conclusion and perspectives 260
References 261
Chapter 235. Lanthanide Near-Infrared Luminescence in Molecular Probes and Devices 264
List of abbreviations 265
1. Outline and scope of the review 268
2. Photophysics of near-infrared emitting trivalent lanthanide ions 271
3. NIR-emitting molecular edifices 291
4. Overview of potential applications 447
5. Comparison of the chromophores 472
6. Conclusions 500
References 504
Author Index 518
Subject Index 550

Preface

Karl A. Gschneidner, Jr., Jean-Claude G. Bünzli, Vitalij K. Pecharsky

These elements perplex us in our rearches [sic], baffle us in our speculations, and haunt us in our very dreams. They stretch like an unknown sea before us – mocking, mystifying, and murmuring strange revelations and possibilities.

Sir William Crookes (February 16, 1887)

This volume of the Handbook on the Physics and Chemistry of Rare Earth begins with a Dedication to late Professor William (Bill) T. Carnall who pioneered the interpretation of lanthanide spectra in solutions in the 1960s and 1970s. The Dedication is written by Drs. James V. Beitz and Guokui Liu from Argonne National Laboratory where Bill Carnall spent his entire 37-year scientific career.

Optical spectroscopy has been instrumental in the discovery of many lanthanide elements. In return, these elements have always played a prominent role in lighting devices and light conversion technologies (Auer mantles, incandescent lamps, lasers, cathode-ray and plasma displays). They are also presently used in highly sensitive luminescent bio-analyses and cell imaging. This volume is entirely devoted to the photophysical properties of these elements. Its five chapters describe various aspects of lanthanide spectroscopy and its applications. Chapter 231 presents state-of-the-art first-principles f–d calculations of lanthanide energy levels and f–d transition intensities. It is followed by a review (chapter 232) on both theoretical and experimental aspects of f–d transitions, a less known field of lanthanide spectroscopy, yet very important for the design of new optical materials. Chapter 233 describes how confinement effects act on the photophysical properties of lanthanides when they are inserted into nanomaterials, including nanoparticles, nanosheets, nanowires, nanotubes, insulating and semiconductor nanocrystals. The use of lanthanide chelates for biomedical analyses is presented in chapter 234; long lifetimes of the excited states of lanthanide ions allow one to take advantage of time-resolved spectroscopy, which leads to highly sensitive analyses devoid of background effects from the autofluorescence of the samples. The last review (chapter 235) provides a comprehensive survey of near-infrared (NIR) emitting molecular probes and devices, from simple chelates to macrocyclic complexes, heterometallic functional edifices, coordination polymers and other extended structures. Applications ranging from telecommunications to light-emitting diodes and biomedical analyses are assessed.

Chapter 231. First-principles calculations of transition spectra by Kazuyoshi Ogasawara, Shinta Watanabe, Hiroaki Toyoshima and Mikhail G. Brik Kwansei Gakuin University, 2-1 Gakuen, Sanda, Japan


Due to the growing demand for lasers and phosphors operating in UV and VUV regions, a great deal of attention is being paid now to the thorough analysis of high-lying energy levels of lanthanide (R) ions arising from their 4fn and 4fn−15d1 electronic configurations. This chapter reviews the recent development of the first-principles analysis of the spectra of R ions in crystals. It starts with a brief review of the commonly used semi-empirical crystal-field calculations and with a historical overview of the first-principles calculations for multiplet states of metal ions in crystals. A detailed description of the relativistic discrete variational multielectron (DVME) method follows, a first-principles relativistic many-electron calculation method developed by the authors. The major part of the chapter is then devoted to the recent achievements on DVME calculations and analyses of the energy level schemes and spectra of R ions in a free state and in crystals. The Dieke diagram is theoretically extended and the origins of peaks in the spectra are clarified based on the explicit many-electron wavefunctions. An application to the analysis of a commercially-used blue phosphor, BaMgAl10O17:Eu2+ (BAM:Eu2+), is also given.

Chapter 232. transitions by Gary W. Burdick and Mike F. Reid Andrews University, Berrien Springs, MI, USA and University of Canturbury, Christchurch, New Zealand


Numerous applications of lanthanide materials, including scintillators, visible ultraviolet (VUV) lasers, and phosphors for fluorescent lighting and plasma displays, make use of the excited configuration. Obviously, understanding of these states is crucial to the development of advanced materials. This chapter reviews an extension of the parametric model originally developed by Carnall, Wybourne and Dieke to treat spectra. The authors of this chapter show that the extended model may and has been successfully employed to calculate the absorption and emission spectra for the configuration. The review illustrates how parametrization can be applied to calculate other properties of interest, such as non-radiative relaxation rates, thus explaining the major features of the UV and VUV spectra for ions across the entire lanthanide series. The chapter concludes with a discussion of the relationship between parametrized calculations and other approaches, such as ab initio calculations.

Chapter 233. Spectroscopic properties of lanthanides in nanomaterials by Guokui Liu and Xueyuan Chen Argonne National Laboratory, USA and Fujian Institute of Research on the Structure of Matter, Fuzhou, China


This chapter reviews recent studies on energy levels and excited state dynamics of lanthanides (R) in nano-structures, which include R-doped dielectric nano-crystals, implanted nano-particles of semiconductors, coated core–shell nano-particles, nano-tubes and nano-balls stuffed with R ions. New phenomena such as the action of confinement on ion–phonon interaction and its consequences for electronic transitions, energy transfer, and phase transitions are discussed in the light of experimental and theoretical studies reported in the literature. Although the review aims at being comprehensive and covers all the important aspects in the field, emphasis is given to identification and theoretical analysis of various mechanisms for luminescence enhancement, or quenching, and anomalous size- and temperature-dependence of photophysical properties.

Chapter 234. Lanthanide chelates as luminescent labels in biomedical analyses by Takuya Nishioka, Kôichi Fukui, and Kazuko Matsumoto Waseda University and Japan Science and Technology Agency, Tokyo, Japan


Recent advances in time-resolved spectroscopy (TRS) using luminescent lanthanide labels for biomedical analyses are reviewed. The large Stokes shift and long-lived excited states specific to some lanthanide chelates allow the use of TRS for these analyses, which effectively removes background fluorescence of the samples. This enables the measurement of very small signals which could not be detected in conventional fluorometric analyses based on organic dye labels. The resulting high signal-to-noise ratios leads to the determination of trace amounts of targeted proteins, nucleic acids or any other biomolecules with unusually high sensitivity. The chapter includes a description of the synthesis of luminescent lanthanide chelates and of their physical properties. The advantage of luminescence resonance energy transfer (LRET) and luminescence quenching are explained in relationship to the specific properties of the lanthanide chelates used as luminescent labels. Medical applications of lanthanide chelates in immunoassays, DNA hybridization assays, receptor-ligand binding assays, and imaging are reviewed.

Chapter 235. Lanthanide near-infrared luminescence in molecular probes and devices by Steve Comby and Jean-Claude G. Bünzli École Polytechnique Fédérale de Lausanne (EPFL), Switzerland


Interest for lanthanide-containing near-infrared (NIR) emitting compounds stemmed initially from the development of lasers, optical fibers and amplifiers for telecommunications. Up-conversion processes have also been the subject of much attention. More recently, it was realized that biological tissues are transparent to light in the range 700–1000 nm, allowing optical detection of tumors. This review concentrates mainly on discrete molecular edifices containing NdIII, ErIII, or YbIII, although systems containing other NIR-emitting RIII ions are also mentioned. It starts with a general description of the photophysical properties of NIR-emitting lanthanide ions and of their sensitization before systematically reviewing the various classes of compounds used for designing NIR-emitting lanthanide probes. Macrocyclic ligands are described first (porphyrins, coronands, cryptands, cyclen derivatives, calixarenes), followed by acyclic ligands, among them beta-diketonates are a privileged and much studied group of chelates. New strategies are described, which make use of podands, dendrimers, or self-assembly processes, as well as of sensitization through d-transition metal ions. The overview ends by the description of NIR-emitting ions embedded into extended structures, coordination polymers, inorganic clusters, zeolites, microporous materials, microspheres and nanoparticles. The last part of the chapter focuses on potential applications, including liquid lasers, optical fibers and amplifiers, light-emitting diodes, and analytical applications, including biomedical analyses. As an aid to future work in the field, comprehensive tables compare the effectiveness of the...

Erscheint lt. Verlag 22.9.2011
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Naturwissenschaften Chemie Anorganische Chemie
Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
ISBN-10 0-08-054858-X / 008054858X
ISBN-13 978-0-08-054858-6 / 9780080548586
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 10,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95