Transport Phenomena in Porous Media II -  Derek B Ingham,  I. Pop

Transport Phenomena in Porous Media II (eBook)

eBook Download: PDF | EPUB
2002 | 1. Auflage
468 Seiten
Elsevier Science (Verlag)
978-0-08-054317-8 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
200,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Transport phenomena in porous media continues to be a field which attracts intensive research activity. This is primarily due to the fact that it plays an important and practical role in a large variety of diverse scientific applications. Transport Phenomena in Porous Media II covers a wide range of the engineering and technological applications, including both stable and unstable flows, heat and mass transfer, porosity, and turbulence.



Transport Phenomena in Porous Media II is the second volume in a series emphasising the fundamentals and applications of research in porous media. It contains 16 interrelated chapters of controversial, and in some cases conflicting, research, over a wide range of topics. The first volume of this series, published in 1998, met with a very favourable reception. Transport Phenomena in Porous Media II maintains the original concept including a wide and diverse range of topics, whilst providing an up-to-date summary of recent research in the field by its leading practitioners.


Transport phenomena in porous media continues to be a field which attracts intensive research activity. This is primarily due to the fact that it plays an important and practical role in a large variety of diverse scientific applications. Transport Phenomena in Porous Media II covers a wide range of the engineering and technological applications, including both stable and unstable flows, heat and mass transfer, porosity, and turbulence.Transport Phenomena in Porous Media II is the second volume in a series emphasising the fundamentals and applications of research in porous media. It contains 16 interrelated chapters of controversial, and in some cases conflicting, research, over a wide range of topics. The first volume of this series, published in 1998, met with a very favourable reception. Transport Phenomena in Porous Media II maintains the original concept including a wide and diverse range of topics, whilst providing an up-to-date summary of recent research in the field by its leading practitioners.

Front Cover 1
TRANSPORT PHENOMENA IN POROUS MEDIA II 4
Copyright Page 5
Contents 12
CHAPTER 1. MODELLING FLUID FLOW IN SATURATED POROUS MEDIA AND AT INTERFACES 20
1.1 Introduction 20
1.2 The Brinkman–Forchheimer equation 21
1.3 Modelling a porous-medium/clear-fluid interface 26
1.4 Non-Newtonian fluid 28
1.5 Effect of rotation 28
1.6 Effect of a magnetic field 29
1.7 A reformulation of the momentum equation 29
1.8 Viscous dissipation 32
1.9 Radiation 34
1.10 Conclusion 34
References 35
CHAPTER 2. BOUNDARY ELEMENT METHOD FOR TRANSPORT PHENOMENA IN POROUS MEDIUM 39
2.1 Introduction 39
2.2 Governing equations 41
2.3 Boundary element method for potential flow in porous medium 42
2.4 Boundary domain integral method 49
2.5 Test example 65
2.6 Conclusion 70
References 70
CHAPTER 3. RECENT ADVANCES IN THE INSTABILITY OF FREE CONVECTIVE BOUNDARY LAYERS IN POROUS MEDIA 73
3.1 Introduction 74
3.2 The governing equations and basic flow 74
3.3 Perturbation equations 76
3.4 Linear evolution of vortices 77
3.5 Nonlinear evolution of vortices 82
3.6 Secondary instabilities 89
3.7 The effect of inertia on linear stability 95
3.8 Conclusion 97
References 98
CHAPTER 4. ONSET OF RAYLEIGH–BÉNARD CONVECTION IN POROUS BODIES 101
4.1 Introduction 101
4.2 Three-dimensional convection problem 103
4.3 A two-dimensional case: the rectangle 106
4.4 The rectangular box 113
4.5 The horizontal circular cylinder 117
4.6 Vertical cylinders 122
4.7 Onset of convection in spherical geometry 126
4.8 Concluding remarks 129
References 130
CHAPTER 5. STABILITY ANALYSIS OF DOUBLE-DIFFUSIVE CONVECTION IN POROUS ENCLOSURES 132
5.1 Introduction 133
5.2 Physical model and mathematical formulation 137
5.3 Finite-amplitude convection 140
5.4 Linear stability analysis 144
5.5 Conclusions 170
References 171
CHAPTER 6. CONVECTION IN ORDERED AND DISORDERED POROUS LAYERS 174
6.1 Introduction 174
6.2 Horton–Rogers–Lapwood experiments 175
6.3 Onset of convection in a homogeneous isotropic medium 177
6.4 Onset of convection in homogeneous anisotropic porous layers 180
6.5 Heterogeneous porous media 182
6.6 Construction of laboratory experiments 183
6.7 Experimental measurements 185
6.8 Conclusions 193
References 193
CHAPTER 7. MICROMECHANICS OF ORDERED, UNIDIRECTIONAL HETEROGENEOUS MATERIALS 196
7.1 Introduction 196
7.2 Effective conductivity 197
7.3 Effective permeability 205
7.4 Discussion 213
References 214
CHAPTER 8. MODELING TURBULENCE IN POROUS MEDIA 217
8.1 Introduction 218
8.2 Transition to turbulence in porous media 219
8.3 Averaging turbulence models 221
8.4 Modeling: averaging operators 224
8.5 Transport equations 230
8.6 Macroscopic model adjustment 242
8.7 Conclusions 245
References 247
CHAPTER 9. TURBULENCE CHARACTERISTICS IN POROUS MEDIA 250
9.1 Introduction 250
9.2 Experimental apparatus 252
9.3 Flow characteristics and flow patterns 253
9.4 Macroscopic momentum equation 258
9.5 Macroscopic energy equation 263
9.6 The 0-equation model 265
9.7 Production and dissipation of turbulence 269
9.8 Kolmogorov's length scale 272
9.9 Concluding remarks 273
References 274
CHAPTER 10. HEAT AND MASS TRANSFER IN POROUS MATERIAL 276
10.1 Introduction 276
10.2 Mathematical formulation 278
10.3 Applications 279
10.4 Conclusions 291
References 293
CHAPTER 11. ISOTHERMAL NUCLEATION AND BUBBLE GROWTH IN POROUS MEDIA AT LOW SUPERSATURATIONS 295
11.1 Introduction 296
11.2 Basic principles 297
11.3 Isothermal gas phase formation in porous media 304
11.4 Experiments 306
11.5 Simulations 317
11.6 Closure of mass balance equations 327
11.7 Conclusions 329
References 331
CHAPTER 12. EFFECTS OF ROTATION ON CONVECTION IN A POROUS LAYER DURING ALLOY SOLIDIFICATION 335
12.1 Introduction 335
12.2 Double-layer model 337
12.3 Chimney model 344
12.4 Single-layer model 355
12.5 Concluding remarks 357
References 358
CHAPTER 13. CHEMICALLY DRIVEN CONVECTION IN POROUS MEDIA 360
13.1 Introduction 361
13.2 Free convection near a stagnation point of a cylindrical body in a porous medium driven by the catalytic reaction scheme I 364
13.3 Forced convection flow near a stagnation point of a cylindrical body in a porous medium driven by the catalytic reaction scheme II 371
13.4 Chemically reactive flow near the stagnation point of a catalytic porous bed 374
13.5 Conclusion 379
References 381
CHAPTER 14. METHANE HYDRATES IN POROUS LAYERS: GAS FORMATION AND CONVECTION 384
14.1 Introduction 385
14.2 Phase change and gas flow 388
14.3 Similarity solution 391
14.4 Numerical solution for a plane-shaped dissociation front 395
14.5 The effect of a geothermal gradient 400
14.6 The effect of porosity and permeability non-uniformities 409
14.7 Concluding remarks 412
References 413
CHAPTER 15. GRAVITY DRIVEN FLOWS IN POROUS ROCKS: EFFECTS OF LAYERING, REACTION, BOILING AND DOUBLE ADVECTION 416
15.1 Introduction 416
15.2 Fundamental models 418
15.3 Effects of stratification in the rock or fluid 422
15.4 Reacting flows 428
15.5 Double advective currents 432
15.6 Currents with mass loss 436
15.7 Effects of confining geometry 438
15.8 Conclusions 441
References 442
CHAPTER 16. POROUS RIVERS: A NEW WAY OF CONCEPTUALISING AND MODELLING RIVER AND FLOODPLAIN FLOWS? 444
16.1 Introduction 444
16.2 Rivers as solid boundary problems 446
16.3 Vegetation in rivers and on floodplains 453
16.4 Analogies with atmospheric flows 457
16.5 The mathematical basis of porosity in rivers 460
16.6 Conclusions 463
References 464

2

Boundary Element Method for Transport Phenomena in Porous Medium


L. Škerget*leo@uni-mb.si; R. Jeclrenata.jecl@uni-mb.si    * University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor, Slovenia
† University of Maribor, Faculty of Civil Engineering, Smetanova 17, 2000 Maribor, Slovenia

Abstract


New computational methods and techniques have allowed us to model and simulate various phenomena in porous medium, and thus a deeper understanding of them is being gained on a perpetual basis. The aim of the present work is to obtain the numerical solution of the governing equations describing the flow of viscous incompressible fluid flow in a porous medium using an appropriate extension of the boundary element method (BEM). A basic description of the BEM is included based on a simple example of potential flow in porous medium. The results obtained on the basis of the Brinkman equations are discussed and the comparison and the suitability of the developed boundary domain integral method (BDIM) with other most commonly used numerical methods employed for this type of problem is evaluated.

Keywords

boundary element method

boundary domain integral method

porous medium

Brinkman equation

natural convection

velocity–vorticity formulation

diffusion–convective

subdomain technique

2.1 INTRODUCTION


Fluid transport phenomena in porous medium refers to the processes related to and accompanied with the transport of fluid momentum, mass and heat, through the given porous medium. These processes which are encountered in many different branches of science and technology, e.g., hydrology, geomechanics, and civil, petroleum, chemical and mechanical engineering, etc. are commonly subject to theoretical treatments which are based upon the methods traditionally developed in classical fluid dynamics. Over recent decades, fluid flows in porous medium have been studied both experimentally and theoretically. Different numerical methods were used for obtaining the solutions of some transport phenomena in porous media, e.g., the finite-difference method (FDM), finite element method (FEM), finite volume method (FVM), as well as the boundary element method (BEM). The main comparative advantage of the BEM, the application of which requires the given partial differential equation to be mathematically transformed into the equivalent integral equation representation, which is latter to be discretized, over the discrete approximative methods is demonstrated in cases where this procedure results in boundary integral equations only. This turns out to be possible only for potential problems, e.g., inviscid fluid flow, heat conduction, etc. In general, the procedure results in boundary domain integral equations and therefore several techniques were developed to extend the classical BEM. The dual reciprocity boundary element method (DRBEM) represents one of the possibilities for transforming the domain integrals into a finite series of boundary integrals, see for example Blobner et al. (2000) and Pérez-Gavilán and Aliabadi (2000). The key point of the DRBEM is the approximation of the field in the domain by a set of global approximation functions and the subsequent representation of the domain integrals of these global functions by boundary integrals. The discretization of the domain is represented only by grid points (poles of global approximation functions) in contrast to FDM meshes. However, the discretization of the geometry and fields on the boundary is piecewise polygonal, which gives the method greater flexibility over the FDM methods in coping with the boundary quantities. In the DRBEM all calculations reduce to the evaluation of boundary integrals only. Another more recent extension of the BEM is the so-called boundary domain integral method (BDIM), see Škerget et al. (1989, 1999) and Jecl et al. (2001). Here, the integral equations are given in terms of the variables on the integration boundaries as well as within the domain of the integration. This situation arises when we are dealing with strongly nonlinear problems with prevailing domain-based effects, for example diffusion–convection problems. The Navier–Stokes equations are commonly used as a framework for the solution of such a problems since they provide a mathematical model of physical conservation laws of mass, momentum and energy. The velocity–vorticity formulation of these equations results in the computational decoupling of the kinematics and kinetics of the fluid motion from the pressure computation, see Wu (1982). Since the pressure does not appear explicitly in the field functions conservation equations, the difficulty connected with the computation of the boundary pressure values is avoided. The main advantage of the BDIM, as compared to the classical domain type numerical techniques, is that it offers an effective way of dealing with boundary conditions on the solid walls when solving the vorticity equation. Namely, the boundary vorticity in the BDIM is computed directly from the kinematic part of the computation and not through the use of some approximate formulae. One of the few drawbacks of the BDIM are considerable CPU time and memory requirements, but they can be drastically reduced by the use of a subdomain technique, see Hriberšek and Škerget (1996). Convection-dominated fluid flows suffer from numerical instabilities. In domain-type numerical techniques upwinding schemes of different orders are used to suppress such instabilities while in BDIM the problem can be avoided by the use of Green’s functions of the appropriate linear differential operators which results in a very stable and accurate numerical description of coupled diffusion–convective problems. There are no oscillations in the numerical solutions, which would have to be eliminated by using some artificial techniques, e.g., upwinding, artificial viscosity, as is the case with other approximation methods.

2.2 GOVERNING EQUATIONS


Due to the general complexity of the fluid transport process in porous medium, our work is based on a simplified mathematical model in which it is assumed that:

 the solid phase is homogeneous, non-deformable, and does not interact chemically with respect to the fluid,

 the fluid is single phase and Newtonian; its density does not depend on pressure variations, but only on variations of the temperature,

 the two average temperatures, Ts for the solid phase and Tf for the fluid phase are assumed to be identical and the porous medium is in thermodynamic equilibrium, that means it is described by a single equation for the average temperature T = Ts = Tf,

 no heat sources or sinks exist in the fluid; thermal radiation and Rayleigh dissipation are negligible,

 the natural convection effect is considered by using the Boussinesq approximation, where the temperature influence on the density is considered only in the term describing the body force, while in all the other terms the density is assumed to be constant.

Under these assumptions, having in mind that we are dealing with time dependent incompressible viscous fluid flow through porous medium, we may write the macroscopic set of equations, commonly called the modified Navier–Stokes equations or the Brinkman equations, as follows:

 continuity equation

vj∂xj=0,

  (2.1)


 momentum equation

ϕ∂vi∂t+1ϕ2∂vjvi∂xj=−1ρ∂P∂xj+Fgi−γKvi⏟Darcylaw+γϕ∂2vi∂xj∂xj⏟Brinkmanextension,

  (2.2)


 energy equation

∂T∂t+∂vjT∂xj=∂∂xja∂T∂xj,

  (2.3)


where the vector field functions vi, gi and xi are the filtration velocity, gravity and position, respectively. The scalar quantity P = p − ρgiri is the modified pressure, while ρ and ϕ stand for the density and porosity. The quantities γ, K, a and σ are the kinematic viscosity coefficient, permeability, thermal diffusivity and the heat capacity ratio, which is defined by the expression

=ϕ+ρscp,sρcp1−ϕ,

  (2.4)

where the subscript s denotes the solid part of porous medium. The following general expression for the density variation can be used: ρ = ρ0 (1 + F), where the function F is frequently defined as...

Erscheint lt. Verlag 20.6.2002
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Naturwissenschaften Physik / Astronomie Strömungsmechanik
Technik Bauwesen
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-08-054317-0 / 0080543170
ISBN-13 978-0-08-054317-8 / 9780080543178
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 23,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 11,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische …

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99