Hydraulics of Open Channel Flow (eBook)
650 Seiten
Elsevier Science (Verlag)
978-0-08-047297-3 (ISBN)
This innovative textbook contains numerous examples and practical applications, and is fully illustrated with both colour and black and white photographs. Dr Chanson introduces the basic principles of open channel flow and takes readers through the key topics of sediment transport, hydraulic modelling and the design of hydraulic structures.
?Comprehensive coverage of the basic principles of key application areas of the hydraulics of open channel flow
?New exercises and examples added to aid understanding
?Ideal for use by students and lecturers in civil and environmental engineering
Since the publication of its first edition in 1999, 'The Hydraulics of Open Channel Flow' has been praised by professionals, academics, students and researchers alike as the most practical modern textbook on open channel flow available. This new edition includes substantial new material on hydraulic modelling, in particular addressing unsteady open channel flows. There are also many new exercises and projects, including a major new revision assignment. This innovative textbook contains numerous examples and practical applications, and is fully illustrated with photographs. Dr Chanson introduces the basic principles of open channel flow and takes readers through the key topics of sediment transport, hydraulic modelling and the design of hydraulic structures. - Comprehensive coverage of the basic principles of key application areas of the hydraulics of open channel flow- New exercises and examples added to aid understanding- Ideal for use by students and lecturers in civil and environmental engineering
Cover 1
The Hydraulics of Open Channel Flow: An Introduction 4
Contents 6
Preface to the first edition 12
Preface to the second edition 14
Acknowledgements 17
About the author 19
Dedication 20
Glossary 21
A 21
B 22
C 23
D 26
E 26
F 27
G 28
H 28
I 29
J 30
K 30
L 30
M 30
N 31
O 32
P 32
R 33
S 34
T 36
U 37
V 37
W 38
Y 39
List of symbols 40
Greek symbols 44
Subscript 45
Abbreviations 46
Reminder 46
Dimensionless numbers 47
Notes 48
Part 1 Basic Principles of Open Channel Flows 50
1. Introduction 52
Summary 52
1.1 Presentation 52
1.2 Fluid properties 52
1.3 Static fluids 53
1.4 Open channel flow 55
1.4.1 Definition 55
1.4.2 Applications 55
1.4.3 Discussion 57
1.5 Exercises 57
2. Fundamental equations 58
Summary 58
2.1 Introduction 58
2.2 The fundamental equations 58
2.2.1 Introduction 58
2.2.2 The continuity equation 59
2.2.3 The momentum equation 60
The Navier–Stokes equation 60
Application of the momentum equation 64
Application: hydraulic jump 64
The Bernoulli equation 65
2.2.4 The energy equation 67
2.3 Exercises 68
3. Applications of the Bernoulli equation to open channel flows 70
Summary 70
3.1 Introduction 70
3.2 Application of the Bernoulli equation – specific energy 70
3.2.1 Bernoulli equation 70
Summary 70
Application of the Bernoulli equation 71
Hydrostatic pressure distribution in open channel flow 71
Pressure distribution in open channel flow 72
Mean total head 73
Pitot tube 74
3.2.2 Influence of the velocity distribution 76
Introduction 76
Velocity distribution 76
Velocity coefficients 76
Momentum correction coefficient 76
Kinetic energy correction coefficient 77
Correction coefficient in the Bernoulli equation 78
3.2.3 Specific energy 78
Definition 78
Analysis of the specific energy 79
Relationship flow depth versus specific energy 79
Critical flow conditions 80
Application of the specific energy 82
Discussion 83
Change in specific energy associated with a fixed discharge 83
Case of fixed specific energy 85
3.2.4 Limitations of the Bernoulli equation 86
3.3 Froude number 86
3.3.1 Definition 86
3.3.2 Similarity and Froude number 88
3.3.3 Critical conditions and wave celerity 89
3.3.4 Analogy with compressible flow 90
3.3.5 Critical flows and controls 91
Occurrence of critical flow – control section 91
Upstream and downstream controls 92
Application: influence of the channel width 92
3.4 Properties of common open-channel shapes 93
3.4.1 Properties 93
3.4.2 Critical flow conditions 94
3.5 Exercises 95
4. Applications of the momentum principle: hydraulic jump, surge and flow resistance in open channels 99
Summary 99
4.1 Momentum principle and application 99
4.1.1 Introduction 99
4.1.2 Momentum principle 99
4.1.3 Momentum function 102
4.2 Hydraulic jump 102
4.2.1 Presentation 102
Definition 103
4.2.2 Basic equations 103
4.2.3 Discussion 109
Types of hydraulic jump 109
Length of the roller 110
Application: energy dissipation basin 110
4.3 Surges and bores 113
4.3.1 Introduction 113
4.3.2 Equations 113
4.3.3 Discussion 116
4.3.4 Positive and negative surges 117
Definitions 117
Positive surges 117
Negative surges 117
Discussion 118
4.4 Flow resistance in open channels 118
4.4.1 Presentation and definitions 118
Introduction 118
Head loss 119
Bottom shear stress and shear velocity 120
Friction factor calculation 121
4.4.2 Flow resistance of open channel flows 124
Momentum equation in steady uniform equilibrium open channel flow 124
Chézy coefficient 126
The Gauckler–Manning coefficient 128
The Strickler’s coefficient 129
Particular flow resistance approximations 129
4.5 Flow resistance calculations in engineering practice 130
4.5.1 Introduction 130
Flow resistance calculations in open channels 130
4.5.2 Selection of a flow resistance formula 131
4.5.3 Flow resistance in a flood plain 135
4.6 Exercises 136
Momentum equation 136
Hydraulic jump 137
Surges and bores 138
Flow resistance 139
5. Uniform flows and gradually varied flows 143
Summary 143
5.1 Uniform flows 143
5.1.1 Presentation 143
Definition 143
Basic equations 143
5.1.2 Discussion 144
Mild and steep slopes 144
Critical slope 144
Application: most efficient cross-sectional shape 145
5.1.3 Uniform flow depth in non-rectangular channels 145
5.2 Non-uniform flows 149
5.2.1 Introduction 149
5.2.2 Equations for GVF: backwater calculation 151
5.2.3 Discussion 152
Singularity of the energy equation 152
Free-surface profiles 153
5.2.4 Backwater computations 155
Discussion 155
Standard step method (distance calculated from depth) 156
5.3 Exercises 157
Critical and uniform flow calculations 158
Hydraulic controls 158
Backwater calculations 158
Part 1 Revision exercises 160
Revision exercise No. 1 160
Revision exercise No. 2 161
Revision exercise No. 3 162
Revision exercise No. 4 162
Revision exercise No. 5 163
Revision exercise No. 6 164
Revision exercise No. 7 165
Revision exercise No. 8 165
Revision exercise No. 9 166
Appendices to Part 1 168
A1.1 Constants and fluid properties 168
A1.1.1 Acceleration of gravity 168
Standard acceleration of gravity 168
Absolute gravity values 168
A1.1.2 Properties of water 169
A1.1.3 Gas properties 169
Basic equations 169
Physical properties 170
Compressibility and bulk modulus of elasticity 170
Celerity of sound 170
Introduction 170
Sound celerity in gas 171
Classical values 171
A1.1.4 Atmospheric parameters 171
Air pressure 171
Air temperature 171
Viscosity of air 171
A1.2 Unit conversions 172
A1.2.1 Introduction 172
Principles and rules 172
A1.2.2 Units and conversion factors 173
A1.3 Mathematics 174
Summary 174
A1.3.1 Introduction 174
References 174
Notation 174
Constants 175
A1.3.2 Vector operations 175
Definitions 175
Vector operations 175
Scalar product of two vectors 175
Vector product 175
A1.3.3 Differential and differentiation 176
Absolute differential 176
Differential operators 176
Gradient 176
Divergence 176
Curl 176
Laplacian operator 176
Polar coordinates 177
Operator relationship 177
Gradient 177
Divergence 177
Curl 177
Laplacian 178
A1.3.4 Trigonometric functions 178
Definitions 178
Relationships 179
Inverse trigonometric functions 181
A1.3.5 Hyperbolic functions 182
Definitions 182
Relationships 183
Inverse hyperbolic functions 184
A1.3.6 Complex numbers 185
Definition 185
Properties 186
Conjugate number 186
A1.3.7 Polynomial equations 186
Presentation 186
Polynomial equation of degree two 186
Polynomial equation of degree three 187
A1.4 Alternate depths in open channel flow 187
A1.4.1 Presentation 187
A1.4.2 Discussion 188
Part 2 Introduction to Sediment Transport in Open Channels 190
6. Introduction to sediment transport in open channels 192
6.1 Introduction 192
6.2 Significance of sediment transport 192
6.2.1 Sediment transport in large alluvial streams 192
6.2.2 Failures caused by sediment-transport processes 193
Moore Creek dam, Tamworth, Australia 193
Old Quipolly dam, Werris Creek, Australia 195
Mount Isa railway bridges, Queensland, Australia 196
Shihmen dam, Taiwan 196
6.3 Terminology 197
6.4 Structure of this section 198
6.5 Exercises 199
7. Sediment transport and sediment properties 200
7.1 Basic concepts 200
7.1.1 Definitions 200
7.1.2 Bed formation 200
7.2 Physical properties of sediments 204
7.2.1 Introduction 204
7.2.2 Property of single particles 204
7.2.3 Properties of sediment mixture 205
7.2.4 Particle size distribution 207
7.3 Particle fall velocity 208
7.3.1 Presentation 208
7.3.2 Settling velocity of a single particle in still fluid 208
Discussion: settling velocity of sediment particles 212
7.3.3 Effect of sediment concentration 213
7.3.4 Effect of turbulence on the settling velocity 214
7.4 Angle of repose 214
7.5 Laboratory measurements 215
7.5.1 Particle size distribution 215
7.5.2 Concentration of suspended sediments 215
7.6 Exercises 215
Bed forms 215
Sediment properties 216
Settling velocity 216
8. Inception of sediment motion – occurrence of bed load motion 218
8.1 Introduction 218
8.2 Hydraulics of alluvial streams 218
8.2.1 Introduction 218
8.2.2 Velocity distributions in turbulent flows 218
8.2.3 Velocity profiles in alluvial streams 221
8.2.4 Forces acting on a sediment particle 222
8.3 Threshold of sediment bed motion 224
8.3.1 Introduction 224
8.3.2 Simple dimensional analysis 224
Discussion 224
8.3.3 Experimental observations 225
Comments 226
8.3.4 Discussion 229
8.4 Exercises 231
9. Inception of suspended-load motion 232
9.1 Presentation 232
9.2 Initiation of suspension and critical bed shear stress 232
9.3 Onset of hyperconcentrated flow 234
9.3.1 Definition 234
9.3.2 Discussion 234
9.4 Exercises 236
10. Sediment transport mechanisms: 1. Bed-load transport 237
10.1 Introduction 237
Definitions 240
10.2 Empirical correlations of bed-load transport rate 240
10.2.1 Introduction 240
10.2.2 Empirical bed-load transport predictions 240
10.3 Bed-load calculations 242
10.3.1 Presentation 242
10.3.2 Bed-load transport rate 243
10.3.3 Discussion 243
10.4 Applications 245
10.4.1 Application No. 1 245
First calculations 245
Approach No. 1: Meyer-Peter correlation 246
Approach No. 2: Einstein function 246
Approach No. 3: bed-load calculation (equation (10.5)) 246
Summary 247
10.4.2 Application No. 2 247
First calculations 247
Approach No. 1: Meyer-Peter correlation 248
Approach No. 2 : Einstein function 248
Approach No. 3: bed-load calculation (equation (10.5)) 248
Summary 249
10.4.3 Application No. 3 249
First calculations 249
Approach No. 1: Meyer-Peter correlation 250
Approach No. 2: Einstein function 250
Approach No. 3: bed-load calculation (equation (10.5)) 250
Summary 250
Discussion 251
10.5 Exercises 251
11. Sediment transport mechanisms: 2. Suspended-load transport 253
11.1 Introduction 253
Mechanisms of suspended-load transport 254
11.2 Advective diffusion of sediment suspension 255
11.2.1 Introduction 255
11.2.2 Sediment concentration in streams 255
11.2.3 Discussion 256
Sediment motion and flow regions in sediment-laden flows 256
Reference concentration and elevation 257
Sediment diffusivity 257
11.3 Suspended-sediment transport rate 258
11.3.1 Presentation 258
11.3.2 Calculations 259
11.3.3 Application 260
11.4 Hyperconcentrated suspension flows 263
11.4.1 Presentation 263
11.4.2 Fluid properties 264
Rheology 264
11.4.3 Discussion 265
11.5 Exercises 265
12. Sediment transport capacity and total sediment transport 267
12.1 Introduction 267
12.2 Total sediment transport rate (sediment transport capacity) 267
12.2.1 Presentation 267
12.2.2 Calculation of the sediment transport capacity 267
12.2.3 Discussion 269
12.3 Erosion, accretion and sediment bed motion 269
12.3.1 Presentation 269
12.3.2 Continuity principle for bed material 270
12.3.3 Applications 273
12.4 Sediment transport in alluvial channels 275
12.4.1 Introduction 275
12.4.2 Influence of bed forms on flow resistance 276
Skin friction shear stress 276
Bed-form shear stress 277
Important 280
12.4.3 Design chart 281
12.5 Applications 281
12.5.1 Presentation 281
(A) Determination of the channel characteristics 283
(B) Selection of the inflow conditions 283
(C) Calculations of sediment-laden flow properties 283
[1] Preliminary calculations 283
[2] Pre-design calculations to assess the type of bed form 283
[3] Complete flow calculations 283
[4] Sediment transport calculations 284
Comments 284
12.5.2 Application No. 1 284
12.5.3 Application No. 2 285
12.6 Exercises 287
Continuity equation for sediment material 287
Total sediment transport capacity 287
Part 2 Revision exercises 288
Revision exercise No. 1 288
Revision exercise No. 2 288
Revision exercise No. 3 288
Revision exercise No. 4 288
Revision exercise No. 5 289
Appendix to Part 2 290
A2.1 Some examples of reservoir sedimentation 290
A2.1.1 Introduction 290
A2.1.2 Reservoir siltation in Australia 290
The Umberumberka dam, Broken Hill, NSW 290
The Korrumbyn Creek dam, Murwillumbah, NSW 290
The Cunningham Creek dam, Harden, NSW 294
A2.1.3 Extreme reservoir siltation 294
Part 3 Hydraulic Modelling 296
13. Summary of basic hydraulic principles 298
13.1 Introduction 298
13.2 Basic principles 298
13.2.1 Introduction 298
13.2.2 Basic equations in open channel flows 299
13.2.3 The Bernoulli equation 299
13.3 Flow resistance 300
14. Physical modelling of hydraulics 302
14.1 Introduction 302
Definition: the physical hydraulic model 302
Discussion 302
14.2 Basic principles 303
Basic-scale ratios 303
Subsequent-scale ratios 305
14.3 Dimensional analysis 305
14.3.1 Basic parameters 305
14.3.2 Dimensional analysis 306
14.3.3 Dynamic similarity 307
Practical considerations 307
14.3.4 Scale effects 308
Discussion 310
14.4 Modelling fully enclosed flows 311
14.4.1 Reynolds models 311
14.4.2 Discussion 311
Flow resistance in pipe flows 311
Skin friction and form drag 312
14.4.3 Practical considerations in modelling fully enclosed flows 312
14.5 Modelling free-surface flows 313
14.5.1 Presentation 313
14.5.2 Modelling hydraulic structures and wave motion 314
14.5.3 Modelling rivers and flood plains 314
Distorted models 314
Movable-bed models 315
14.5.4 Resistance scaling 315
Distorted models 316
14.6 Design of physical models 317
14.6.1 Introduction 317
14.6.2 General case 317
14.6.3 Distorted-scale models 318
14.7 Summary 318
14.8 Exercises 319
15. Numerical modelling of steady open channel flows: backwater computations 324
15.1 Introduction 324
15.2 Basic equations 324
15.2.1 Presentation 324
15.2.2 Basic assumptions 325
15.2.3 Applications 326
15.2.4 Discussion: flow resistance calculations 326
Empirical resistance coefficients 327
Discussion 328
15.3 Backwater calculations 328
15.3.1 Presentation 328
15.3.2 Method 328
15.3.3 Calculations 331
15.3.4 Comments 332
15.4 Numerical integration 332
15.4.1 Introduction 332
15.4.2 Standard step method (depth calculated from distance) 333
15.4.3 Computational algorithm 334
15.4.4 Flood plain calculations 335
15.5 Discussion 336
15.6 Computer models 337
15.7 Exercises 337
16. Unsteady open channel flows: 1. Basic equations 339
Summary 339
16.1 Introduction 339
16.2 Basic equations 340
16.2.1 Presentation 340
16.2.2 Integral form of the Saint-Venant equations 342
Continuity equation 342
Momentum principle 342
16.2.3 Differential form of the Saint-Venant equations 345
16.2.4 Flow resistance estimate 347
Flood plain calculations 349
16.2.5 Discussion 349
16.3 Method of characteristics 350
16.3.1 Introduction 350
Discussion: graphical solution of the characteristic system of equations 353
16.3.2 Boundary conditions 354
Initial and boundary conditions 356
16.3.3 Application: numerical integration of the method of characteristics 357
16.4 Discussion 359
16.4.1 The dynamic equation 359
Simplification of the dynamic wave equation 359
16.4.2 Limitations of the Saint-Venant equations 360
Flood plains 360
Non-hydrostatic pressure distributions 360
Sharp discontinuities 361
16.4.3 Concluding remarks 361
16.5 Exercises 362
17. Unsteady open channel flows: 2. Applications 367
Summary 367
17.1 Introduction 367
17.2 Propagation of waves 368
17.2.1 Propagation of a small wave 368
17.2.2 Propagation of a known discharge (monoclinal wave) 370
17.3 The simple-wave problem 371
17.3.1 Basic equations 371
17.3.2 Application 373
17.4 Positive and negative surges 377
17.4.1 Presentation 377
17.4.2 Positive surge 378
Simple-wave calculations of a positive surge 380
Positive surge propagating in uniform equilibrium flow 382
17.4.3 Negative surge 384
Sudden complete opening 386
Sudden partial opening 386
17.5 The kinematic wave problem 388
17.5.1 Presentation 388
17.5.2 Discussion 389
17.6 The diffusion wave problem 390
17.6.1 Presentation 390
17.6.2 Discussion 392
17.6.3 The Cunge–Muskingum method 393
Empiricism: the Muskingum method 393
Cunge–Muskingum method 394
17.7 Dam break wave 395
17.7.1 Presentation 395
17.7.2 Dam break wave in a horizontal channel 395
Dam break in a dry channel 395
Dam break in a horizontal channel initially filled with water 399
17.7.3 Discussion 406
Effects of flow resistance 406
Dam break wave down a sloping channel 408
Further dam break wave conditions 410
17.8 Exercises 411
Part 3 Revision exercises 420
Revision exercise No. 1 420
Revision exercise No. 2 420
Revision exercise No. 3 420
Solution 421
Remarks 422
Appendices to Part 3 423
A3.1 Physical modelling of movable boundary hydraulics 423
A3.1.1 Introduction 423
A3.1.2 Bed-load motion 423
Occurrence of bed-load motion 423
Discussion 424
Bed-load sediment transport rate 424
Summary 425
A3.1.3 Suspension 425
Occurrence of suspension 425
Suspended-sediment transport rate 425
A3.1.4 Time scale in sediment transport 426
A3.2 Extension of the backwater equation 426
A3.2.1 Introduction 426
Presentation 426
Energy equation 427
A3.2.2 Extension of the backwater equations 428
Flat channel of constant width 428
Flat channel of non-constant width 428
Channel of constant width and non-constant slope 428
Channel of non-constant width and non-constant slope 429
General case 429
A3.3 Computer calculations of backwater profiles 430
A3.3.1 Introduction 430
A3.3.2 Practical class 430
A3.3.3 Use of HydroChan 431
Inputs 431
Outputs 431
Discussion 432
A3.3.4 Application 432
A3.4 Gaussian error functions 433
A3.4.1 Gaussian error function 433
A3.4.2 Complementary error function 434
Part 4 Design of Hydraulic Structures 436
18. Introduction to the design of hydraulic structures 438
18.1 Introduction 438
18.2 Structure of Part 4 438
18.3 Professional design approach 438
19. Design of weirs and spillways 440
19.1 Introduction 440
19.1.1 Definitions: dams and weirs 440
19.1.2 Overflow spillway 440
19.1.3 Discussion 442
19.2 Crest design 444
19.2.1 Introduction 444
19.2.2 Broad-crested weir 445
19.2.3 Sharp-crested weir 446
19.2.4 Ogee-crest weir 448
Nappe-shaped overflow weir 450
Discharge characteristics of an ogee crest 451
Standard crest shapes 452
19.3 Chute design 455
19.3.1 Presentation 455
19.3.2 Application 456
19.3.3 Discussion 457
19.4 Stilling basins and energy dissipators 458
19.4.1 Presentation 458
19.4.2 Energy dissipation at hydraulic jumps 459
Introduction 459
Types of hydraulic jump 461
Length of the roller 462
19.4.3 Stilling basins 462
Basic shapes 463
Standard stilling basins 463
19.4.4 Discussion 464
19.5 Design procedure 466
19.5.1 Introduction 466
19.5.2 Dam spillway with hydraulic jump energy dissipator 466
Matching the JHRC and the TWRC 468
19.5.3 Practical considerations 473
19.6 Exercises 473
20. Design of drop structures and stepped cascades 480
20.1 Introduction 480
20.2 Drop structures 481
20.2.1 Introduction 481
20.2.2 Free overfall 482
20.2.3 Drop impact 485
20.2.4 Design criterion 485
20.2.5 Discussion 486
20.3 Nappe flow on stepped cascades 487
20.3.1 Presentation 487
20.3.2 Basic flow properties 487
20.3.3 Energy dissipation 487
20.4 Exercises 488
21. Culvert design 489
21.1 Introduction 489
21.2 Basic features of a culvert 489
21.2.1 Definitions 489
21.2.2 Ideal-flow calculations 489
21.2.3 Design considerations 492
21.2.4 Flow through a culvert 492
21.2.5 Undular flow in the barrel 493
21.3 Design of standard culverts 494
21.3.1 Presentation 494
21.3.2 Operation – flow patterns 494
21.3.3 Discharge characteristics 497
21.3.4 Design procedure 500
The larger value controls 503
21.4 Design of MEL culverts 503
21.4.1 Definition 503
21.4.2 Basic considerations 509
Streamlining 509
Critical flow conditions 509
21.4.3 A simple design method 510
Design process 510
Discussion 511
Energy losses 514
21.4.4 Discussion 516
Challenges and practical considerations 516
Design of multi-cell barrel 518
Operation for non-design flow conditions 518
21.4.5 Benefits of MEL culverts and waterways 519
21.5 Exercises 520
Part 4 Revision exercises 525
Revision exercise No. 1 525
Revision exercise No. 2 (hydraulic design of a new Gold Creek dam spillway) 525
Appendix: History of the dam 528
Revision exercise No. 3 (hydraulic design of the Nudgee Road bridge waterway) 529
Revision exercise No. 4 532
(1) Design (a) 532
(2) Design (b) 533
Appendices to Part 4 534
A4.1 Spillway chute flow calculations 534
A4.1.1 Introduction 534
A4.1.2 Developing flow region 535
Basic equations 535
Boundary layer growth 535
Developing flow characteristics 536
A4.1.3 Fully developed flow region 537
Presentation 537
Uniform equilibrium flow 537
Gradually varied flow region 538
A4.1.4 Application and practice 539
Presentation 539
Practical considerations 540
Application 541
A4.2 Examples of minimum energy loss weirs 541
A4.2.1 Introduction 541
Design technique 541
Hydraulic calculations 542
A4.2.2 Examples of MEL weirs 543
A4.3 Examples of minimum energy loss culverts and waterways 545
A4.3.1 Introduction 545
A4.3.2 Historical developments of MEL culverts and waterways 545
A4.3.3 Examples of MEL waterways 546
A4.3.4 Examples of MEL culverts 548
Efficient designs 548
A4.3.5 Poor designs 554
A4.4 Computer calculations of standard culvert hydraulics 557
A4.4.1 Introduction 557
Discussion 557
Audio-visual material 557
Physical model 557
Computer program 557
A4.4.2 Use of HydroCulv 558
Inputs 558
Outputs 558
Discussion 559
4.4.3 Application 559
Comparison physical model–computer results 560
References 561
Additional bibliography 577
Bibliography: history of hydraulics 577
Bibliography: audio-visual material 577
Bibliography: internet references 578
Problems 580
P1. A study of the Marib dam and its sluice system (BC 115 to AD 575) 582
Preface 582
P1.1 Introduction 582
P1.1.1 Historical background 582
P1.1.2 Dam construction 582
Southern sluice system 584
Northern sluice system 584
End of the Marib dam 585
‘New’ Marib dam 585
P1.1.3 Chronological summary 585
P1.1.4 Bibliography 585
Books 585
Journal articles 585
P1.2 Hydraulics problem 586
Introductory note 586
P1.2.1 Study of the spillways 586
P1.2.2 Study of the channel outlet and settling basin 586
P1.2.3 Study of the canal 587
Notes 588
P1.3 Hydrological study: flood attenuation of the Marib reservoir 589
Assumptions 589
P2. A study of the Moeris reservoir, the Ha-Uar dam and the canal connecting the Nile River and Lake Moeris around BC 2900 to BC 230 590
Preface 590
P2.1 Introduction 590
P2.1.1 Presentation 590
P2.1.2 The Moeris Lake 590
Geometrical characteristics 592
Climatic conditions 592
P2.1.3 The Ha-Uar dam 593
Canal connecting the Nile and the Lake Moeris 593
Eastern dam 593
P2.1.4 Historical events 594
P2.1.5 Important dates 594
P2.1.6 Discussion 594
P2.1.7 Bibliography 595
Books 595
Journal articles 595
P2.2 Hydraulics problem 595
Introductory note 595
P2.2.1 Study of the upper regulator 596
P2.2.2 Study of the channel 597
P2.3 Hydrology of Egypt's Lake Moeris 598
Part A 598
Part B 598
P3. A study of the Moche river irrigation systems (Peru AD 200–1532) 600
Preface 600
P3.1 Introduction 600
P3.1.1 Presentation 600
Geography 601
The Mochican culture 601
The Chimu empire 601
The Inca empire 602
P3.1.2 The irrigation system of the Moche river valley 603
Vichansao canal 603
Inter-valley canal 604
P3.1.3 Important dates 605
P3.1.4 Bibliography 605
Books 605
Journal articles 605
P3.2 Hydraulics problem 606
P3.2.1 Study of the Vichansao canal and the diversion dam (Part A) 606
P3.2.2 Study of the Inter-valley canal 606
P3.3 Hydrology of western Peru 608
P3.3.1 Background 608
P3.3.2 Question A 609
P3.3.3 Question B 609
P3.3.4 Question C 609
P4. Hydraulics of the Nîmes aqueduct 610
Preface 610
P4.1 Introduction 610
P4.1.1 Presentation 610
P4.1.2 Hydrology and operation of Roman aqueducts 612
Hydrology 612
Regulation basins 613
P4.1.3 Culvert design 613
P4.1.4 The Nîmes aqueduct 614
P4.1.5 Bibliography 615
Internet references 617
P4.2 Hydraulic study of the Nîmes aqueduct 618
P4.2.1 Regulation system 618
P4.2.2 Free-surface profile calculations 618
P4.2.3 Culvert design 618
Suggestion/correction form 622
Author index 624
A 624
B 624
C 624
D 625
E 625
F 625
G 625
H 625
I 625
J 626
K 626
L 626
M 626
N 626
O 626
P 626
R 627
S 627
T 627
U 627
V 627
W 627
Y 627
Z 627
Subject index 628
A 628
B 628
C 628
D 629
E 630
F 630
G 630
H 630
I 631
J 631
K 631
L 631
M 631
N 632
O 632
P 632
R 632
S 632
T 633
U 634
V 634
W 634
Y 634
Color Plates 636
Erscheint lt. Verlag | 25.5.2004 |
---|---|
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
ISBN-10 | 0-08-047297-4 / 0080472974 |
ISBN-13 | 978-0-08-047297-3 / 9780080472973 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich