Radiation Biophysics -  Edward L. Alpen

Radiation Biophysics (eBook)

eBook Download: PDF
1997 | 2. Auflage
484 Seiten
Elsevier Science (Verlag)
978-0-08-054020-7 (ISBN)
Systemvoraussetzungen
127,96 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This newly revised and updated edition of Radiation Biophysics provides an in-depth description of the physics and chemistry of radiation and its effects on biological systems. Coverage begins with fundamental concepts of the physics of radiation and radioactivity, then progresses through the chemistry and biology of the interaction of radiation with living systems. The Second Edition of this highly praised text includes major revisions which reflect the rapid advances in the field. New material covers recent developments in the fields of carcinogenesis, DNA repair, molecular genetics, and the molecular biology of oncogenes and tumor suppressor genes. The book also includes extensive discussion of the practical impact of radiation on everyday life.

Key Features
* Covers the fundamentals of radiation physics in a manner that is understandable to students and professionals with a limited physics background
* Includes problem sets and exercises to aid both teachers and students
* Discusses radioactivity, internally deposited radionuclides, and dosimetry
* Analyzes the risks for occupational and non-occupational workers exposed to radiation sources
This newly revised and updated edition of Radiation Biophysics provides an in-depth description of the physics and chemistry of radiation and its effects on biological systems. Coverage begins with fundamental concepts of the physics of radiation and radioactivity, then progresses through the chemistry and biology of the interaction of radiation with living systems. The Second Edition of this highly praised text includes major revisions which reflect the rapid advances in the field. New material covers recent developments in the fields of carcinogenesis, DNA repair, molecular genetics, and the molecular biology of oncogenes and tumor suppressor genes. The book also includes extensive discussion of the practical impact of radiation on everyday life. - Covers the fundamentals of radiation physics in a manner that is understandable to students and professionals with a limited physics background- Includes problem sets and exercises to aid both teachers and students- Discusses radioactivity, internally deposited radionuclides, and dosimetry- Analyzes the risks for occupational and non-occupational workers exposed to radiation sources

Front Cover 1
Radiation Biophysics 4
Copyright Page 5
Contents 8
Preface to the Second Edition 24
Preface to the First Edition 26
Introduction: An Historical Perspective 28
Chapter 1. Quantities, Units, and Definitions 34
Quantities and Units 34
Radiation Measurement 37
Radioactivity Measurements 42
References 43
Chapter 2. Electromagnetic Radiation: Its Nature and Properties 44
Introduction 44
Quantum Theory of Electromagnetic Radiation 48
Special Relativity 50
Relativistic Considerations of Mass and Velocity 52
Atomic Structure 53
De Broglie Wave Theory 57
References 58
Suggested Additional Reading 58
Problems 59
Chapter 3. Radioactivity 60
Introduction 60
Unit of Radioactivity 60
Law of Radioactive Decay 61
Radioactive Decay of Mixtures 63
Branching Decay Processes 67
Nomenclature of Radioactive Decay 69
Charting Decay Schemes 70
Nuclear Stability 71
Nuclear Mass and Binding Energy 72
Radioactive Decay by Alpha-Particle Emission 74
Negative Electron Emission Decay 75
Positive Electron Emission Decay 76
Decay by Electron Capture 78
Internal Conversion 79
References 81
Suggested Additional Reading 81
Problems 81
Chapter 4. Interaction of Radiation with Matter 83
Introduction 83
Linear Attenuation Coefficient 84
Energy Transfer and Energy Absorption 89
Mechanisms of Energy Transfer from Gamma Rays 91
Compton Scattering Process: Incoherent Scattering 95
Pair Production 104
Bremsstrahlung--Radiative Energy Loss 107
References 109
Suggested Additional Reading 109
Problems 109
Chapter 5. Energy Transfer Processes 111
Introduction 111
Importance of the Compton Process in Tissue Systems 112
Interaction of Charged Particles with Matter 116
Final Steps in Energy Absorption 120
Life History of a Fast Electron 122
Dose 122
Absorbed Dose and Kerma 123
Neutron Interactions in Tissue 125
Track Structure and Microdosimetry 129
References 135
Suggested Additional Reading 135
Problems 135
Chapter 6. Radiation Chemistry 137
Introduction 137
Stochastic Nature of Energy Transfer 137
Radiation Chemistry of Water 140
G Value: Expression of Yield in Radiation Chemistry 142
Reactions in the Track: The Role of Scavengers 143
Direct and Indirect Action 146
Recombination, Restitution, and Repair 149
Macromolecular Target in the Cell 150
Reactions of the Products of Water Radiolysis 152
Chain Scission in DNA 155
Role of DNA Configuration 157
Repair of DNA 158
Repair Fidelity 161
References 162
Suggested Additional Reading 163
Problems 163
Chapter 7. Theories and Models for Cell Survival 165
Introduction 165
Clonogenic Survival 165
Lea's Target Theory Model 166
Biological Survival Curves 168
Development of the Target Theory Model 169
Multitarget- Single-Hit Survival 174
Molecular Models for Cell Death 177
Molecular Theory of Radiation Action 179
Theory of Dual Radiation Action 184
Repair-Misrepair Model of Cell Survival 188
Lethal-Potentially Lethal Model 193
Summation 198
References 199
Suggested Additional Reading 200
Problems 200
Chapter 8. Survival Curve and Its Significance 202
Introduction 202
Technique of the Clonogenic Survival Curve 203
Characteristics of the Mammalian Cell Survival Curve 205
Significance of the Shoulder on the Survival Curve 207
Repair of Sublethal Damage 210
Repair of Potentially Lethal Damage 215
Cell Survival and Cell Age 218
Radiation Induced Cell Progression Delay 222
Mechanisms: Radiation Sensitivity, Progression Delay, and the Cell Cycle 223
References 224
Suggested Additional Reading 225
Problems 225
Chapter 9. Modification of the Radiation Response 227
Introduction 227
Role of Water 228
Temperature and Radiation Damage 230
Oxygen Effect 233
Thiols and Modification of Radiation Response 243
Nitroaromatic Radiation Sensitizers 248
Sensitization by 5-Halogen-Substituted Pyrimidines 250
References 252
Suggested Additional Reading 253
Problems 253
Chapter 10. Radiation Biology of Normal and Neoplastic Tissue Systems 255
Introduction 255
Cell Death in Mammalian Tissues 256
Nature of Cell Populations in Tissue 257
Cell Population Kinetics and Radiation Damage 259
Cell Kinetics in Normal Tissues and Tumors 261
Models for Cell Survival in Normal Tissues and Tumors 262
Models for Radiobiological Sensitivity of Neoplastic Tissues 263
Radiobiological Responses of Tumors 269
Hypoxia and Radiosensitivity in Tumor Cells 271
Assay Models for Normal Tissues in Vivo 275
Acute Lethal Response in Mammals 288
Radiation Effects on the Embryo and Fetus 296
References 303
Suggested Additional Reading 305
Problems 305
Chapter 11. Late Effects of Radiation on Normal Tissues: Nonstochastic Effects 308
Introduction 308
Stochastic versus Nonstochastic Effects 310
Radiation Induced Late Pathology in Organ Systems 312
Late Effects in Normal Tissue Systems and Organs 316
Fractionation and Protraction of Exposure in the Modification of Late Radiation Injury 326
References 338
Suggested Additional Reading 340
Problems 340
Chapter 12. Stochastic Effects—Radiation Carcinogenesis 341
Introduction 341
Stochastic versus Nonstochastic Effects 342
Bases for Our Knowledge of Radiation Carcinogenesis 343
Radiation Carcinogenesis in Experimental Animals 344
Transformed Cell in Vitro 353
Role of Viruses in Carcinogenesis 361
Radiation Carcinogenesis in Human Populations 362
Approaches to Risk Estimation 365
Organ-Specific Radiogenic Cancer in Human Beings 371
References 373
Suggested Additional Reading 376
Chapter 13. Stochastic Effects—Genetic Effects of Ionizing Radiation 377
Introduction 377
Structural Changes in Chromosomes 378
Gene Mutations 386
Genomic Instability 389
Gene Mutations in Higher Organisms 390
Summary 396
References 396
Suggested Additional Reading 397
Chapter 14. High Linear Energy Transfer Radiation Effects 398
Introduction 398
Stopping Power and Linear Energy Transfer 399
Bragg Peak of Ionization 401
Significance of Linear Energy Transfer to Biological Damage 406
Relative Biological Effectiveness 408
Dependence of RBE on LET 410
Cell Cycle Dependence of Radiosensitivity 413
Oxygen Effect and High Linear Energy Transfer 414
High Linear Energy Transfer, Dose Rate, and Fractionation 416
Late Effects of High Linear Energy Transfer Radiation 417
References 424
Suggested Additional Reading 425
Chapter 15. Metabolism and Biological Effects of Deposited Radionuclides 426
Introduction 426
Pathways of Entry of Radionuclides 427
Metabolism of Radionuclides 433
Determination of Dose with Internally Deposited Radionuclides 434
Relative Biological Effectiveness and Internally Deposited Radionuclides 444
Radionuclides of Biological Importance 445
References 455
Suggested Additional Reading 456
Problems 456
Chapter 16. Radiation Exposure from Natural Background and Other Sources 457
Introduction 457
Risk Estimates for the Tissue Weighting Factor 462
Exposure Sources 463
Exposure to Natural Background Radiation and Radioactivity 464
Dose from Inhaled Radionuclides 469
Exposure from Cosmic Rays and Cosmogenic Radionuclides 473
Summary of Exposure from Natural Sources 475
Exposure from Medical Applications 477
Population Exposure from Civilian Nuclear Power Operations 482
Radiation Exposure from Consumer Products 488
References 491
Suggested Additional Reading 493
Appendix: Useful Physical Constants and Conversion Factors 494
Author Index 496
Subject Index 500

Erscheint lt. Verlag 22.10.1997
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Medizin / Pharmazie Pflege
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Naturwissenschaften Biologie
Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik Medizintechnik
ISBN-10 0-08-054020-1 / 0080540201
ISBN-13 978-0-08-054020-7 / 9780080540207
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich