Basic Ship Theory Volume 2 (eBook)
368 Seiten
Elsevier Science (Verlag)
978-0-08-049986-4 (ISBN)
The fifth edition continues to provide a balance between theory and practice. Volume 2 expands on the material in Volume 1, covering the dynamics behaviour of marine vehicles, hydrodynamics, manoeuvrability and seakeeping. It concludes with some case studies of particular ship types and a discussion of maritime design. Both volumes feature the importance of considering the environment in design.
Basic Ship Theory is an essential tool for undergraduates and national vocational students of naval architecture, maritime studies, ocean and offshore engineering, and will be of great assistance to practising marine engineers and naval architects.
Brand new edition of the leading undergraduate textbook in Naval Architecture.
Provides a basis for more advanced theory.
Over 500 examples, with answers.
Rawson and Tupper's Basic Ship Theory, first published in 1968, is widely known as the standard introductory text for naval architecture students, as well as being a useful reference for the more experienced designer. The fifth edition continues to provide a balance between theory and practice. Volume 2 expands on the material in Volume 1, covering the dynamics behaviour of marine vehicles, hydrodynamics, manoeuvrability and seakeeping. It concludes with some case studies of particular ship types and a discussion of maritime design. Both volumes feature the importance of considering the environment in design. Basic Ship Theory is an essential tool for undergraduates and national vocational students of naval architecture, maritime studies, ocean and offshore engineering, and will be of great assistance to practising marine engineers and naval architects. - Brand new edition of the leading undergraduate textbook in Naval Architecture- Provides a basis for more advanced theory- Over 500 examples, with answers
Cover 1
Contents 6
Foreword to the fifth edition 12
Acknowledgements 14
Introduction 15
References and the Internet 18
Symbols and nomenclature 19
General 19
Geometry of ship 20
Propeller geometry 20
Resistance and propulsion 20
Seakeeping 21
Manoeuvrability 22
Strength 22
Notes 23
Chapter 10. Powering of ships: general principles 24
Fluid dynamics 25
Components of resistance and propulsion 27
Model testing 56
Ship trials 62
Summary 66
Problems 66
Chapter 11. Powering of ships: application 70
Presentation of data 70
Power estimation 77
Computational fluid dynamics 109
Summary 111
Problems 111
Chapter 12. Seakeeping 116
Seakeeping qualities 116
Ship motions 118
Limiting seakeeping criteria 138
Overall seakeeping performance 146
Acquiring data for seakeeping assessments 149
Non-linear efects 160
Frequency domain and time domain simulations 161
Improving seakeeping performance 163
Experiments and trials 174
Problems 177
Chapter 13. Manoeuvrability 182
General concepts 182
Assessment of manoeuvrability 190
Rudder forces and torques 198
Exper iments and trials 207
Rudder types and systems 211
Ship handling 218
Stability and control of submarines 221
Design assessment 226
Effect of design parameters on manoeuvring 228
Problems 229
Chapter 14. Major ship design features 233
Machinery 233
Systems 241
Equipment 261
Creating a fishtins ship 264
Accommodation 266
Measurement 269
Problems 273
Chapter 15. Ship design 276
Objectives 277
Boundaries 282
Creativity 284
Iteration in design 285
Design for the life intended 304
Conclusion 312
Chapter 16. Particular ship types 314
Passenger ships 314
Ferries and RoRo ships 316
Aircraft carriers 318
Bulk cargo carriers 321
Submarines 324
Container ships 330
Frigates and destroyers 331
High speed small craft 334
Offshore engineering 344
Tugs 347
Fishing vessels 349
Yachts 351
Annex-The Froude ‘constant’ notation (1888) 354
Bibliography 363
Answers to problems 366
Index 368
Introduction
Volume 1 of Basic Ship Theory has presented fundamental work on ship shape, static behaviour, hazards and protection and upon ship strength. It has also described in detail the environment in which marine vehicles have to work and the properties of the sea and the air. Now we are in a position to discuss the dynamic behaviour of ships and other vehicles in the complex environment in which they operate and how those surroundings can be controlled to the maximum comfort of vehicle and crew. We can also enter upon the creative activity of ship design.
Familiarity with Volume 1 has been assumed throughout but for convenience, certain conversion factors, preferred values and symbols and nomenclature are repeated here.
Special names have been adopted for some of the derived SI units and these are listed below together with their unit symbols:
Physical quantity | SI unit | Unit symbol |
Force | newton | N = kg m/s2 |
Work, energy | joule | J = Nm |
Power | watt | W = J/s |
Electric charge | coulomb | C = As |
Electric potential | volt | V = W/A |
Electric capacitance | farad | F = As/V |
Electric resistance | ohm | Ω = V/A |
Frequency | hertz | Hz = s−1 |
Illuminance | lux | lx = lm/m2 |
Self inductance | henry | H = Vs/A |
Luminous flux | lumen | lm = cd sr |
Pressure, stress | pascal | Pa = N/m2 |
megapascal | MPa = N/mm2 |
Electrical conductance | siemens | S = 1/Ω |
Magnetic flux | weber | Wb = Vs |
Magnetic flux density | tesla | T = Wb/m2 |
In the following two tables are listed other derived units and the equivalent values of some UK units respectively:
Physical quantity | SI unit | Unit symbol |
Area | square metre | m2 |
Volume | cubic metre | m3 |
Density | kilogramme per cubic metre | kg/m3 |
Velocity | metre per second | m/s |
Angular velocity | radian per second | rad/s |
Acceleration | metre per second squared | m/s2 |
Angular acceleration | radian per second squared | rad/s2 |
Pressure, Stress | newton per square metre | N/m2 |
Surface tension | newton per metre | N/m |
Dynamic viscosity | newton second per metre squared | N s/m2 |
Kinematic viscosity | metre squared per second | m2/s |
Thermal conductivity | watt per metre degree kelvin | W/(m °K) |
Quantity | UK unit | Equivalent SI units |
Length | 1 yd | 0.9144m |
1 ft | 0.3048m |
1 in | 0.0254m |
1 mile | 1609.344m |
1 nautical mile (UK) | 1853.18m |
1 nautical mile (International) | 1852m |
Area | 1 in2 | 645.16 × 10−6m2 |
1 ft2 | 0.092903 m2 |
1 yd2 | 0.836127 m2 |
1 mile2 | 2.58999 × 106m2 |
Volume | 1 in3 | 16.3871 × 10−6m3 |
1 ft3 | 0.0283168 m3 |
1 UK gal | 0.004546092m3 = 4.546092 litres |
Velocity | 1 ft/s | 0.3048 m/s |
1 mile/hr | 0.44704m/s; 1.60934km/hr |
1 knot (UK) | 0.51477 m/s; 1.85318km/hr |
1 knot (International) | 0.51444m/s; 1.852km/hr |
Standard acceleration, g | 32.174 ft/s2 | 9.80665m/s2 |
Mass | 1 lb | 0.45359237 kg |
1 ton | 1016.05 kg = 1.01605 tonnes |
Mass density | 1 lb/in3 | 27.6799 × 103 kg/m3 |
1 lb/ft3 | 16.0185 kg/m3 |
Force | 1 pdl | 0.138255N |
1 lbf | 4.44822 N |
Pressure | 1 lbf/in2 | 6894.76 N/m2; 0.0689476bars |
Stress | 1 tonf/in2 | 15.4443 × 106 N/m2 |
15.4443 MPa or N/mm2 |
Energy | 1 ft pdl | 0.0421401 J |
1 ft lbf | 1.35582 J |
1 cal | 4.1868 J |
1 Btu | 1055.06 J |
Power | 1 hp | 745.700 W |
Temperature | 1 Rankine unit | 5/9 Kelvin unit |
1 Fahrenheit unit | 5/9 Celsius unit |
Prefixes to denote multiples and sub-multiples to be affixed to the names of units are:
Factor by which the unit is multiplied | Prefix | Symbol |
1000000000000 = 1012 | tera | T |
1000000000 = 109 | giga | G |
1000000 = 106 | mega | M |
1000 = 103 | kilo | k |
100 = 102 | hecto | h |
10 = 101 | deca | da |
0.1 = 10−1 | deci | d |
0.01 = 10−2 | centi | c |
0.001 = 10−3 | milli | m |
0.000001 = 10−6 | micro | μ |
0.000000001 = 10−9 | nano | n |
0.000000000001 = 10−12 | pico | p |
0.000000000000001 = 10−15 | femto | f |
0.000000000000000001 = 10−18 | atto | a |
We list, finally, some proposed metric values (values proposed for density of fresh and salt water are based on a temperature of 15 °C (59 °F).)
Gravity, g | 32.17 ft/s2 | 9.80665m/s2 | 9.807 m/s2 |
Mass density | 64 lb/ft3 | 1.0252 tonne/m3 | 1.025 tonne/m3 |
salt water | 35 ft3/ton | 0.9754 m3/tonne | 0.975m3/tonne |
Mass density | 62.2 lb/ft3 | 0.9964 tonne/m3 | 1.0tonne/m3 |
fresh water | 36 ft3/ton | 1.0033 m3/tonne | 1.0 m3/tonne |
Young’s modulus, E (Steel) | 13,500 tonf/in2 | 2.0855 × 107 N/cm2 | 209 GN/m2 or GPa |
Atmospheric pressure | 14.7 1bf/in2 | 101,353 N/m2 | 105 N/m2 or Pa |
10.1353 N/cm2 | or 1.0 bar |
(saltwater)NPCNPM } | Aw420tonf/inAw(ft2)Aw(m2) | 1.025 Aw tonnef/m | 1.025 Aw tonnef/m |
Aw (m2) |
100.52 Aw (N/cm) |
10,052 Aw (N/m) | 104 Aw (N/m) |
MCT... |
Erscheint lt. Verlag | 5.10.2001 |
---|---|
Sprache | englisch |
Themenwelt | Natur / Technik ► Fahrzeuge / Flugzeuge / Schiffe ► Schiffe |
Technik ► Fahrzeugbau / Schiffbau | |
ISBN-10 | 0-08-049986-4 / 0080499864 |
ISBN-13 | 978-0-08-049986-4 / 9780080499864 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich