Elementary Differential Geometry, Revised 2nd Edition -  Barrett O'Neill

Elementary Differential Geometry, Revised 2nd Edition (eBook)

eBook Download: PDF | EPUB
2006 | 2. Auflage
520 Seiten
Elsevier Science (Verlag)
978-0-08-050542-8 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
61,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Written primarily for students who have completed the standard first courses in calculus and linear algebra, ELEMENTARY DIFFERENTIAL GEOMETRY, REVISED SECOND EDITION, provides an introduction to the geometry of curves and surfaces.

The Second Edition maintained the accessibility of the first, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis was placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard.

This revision of the Second Edition provides a thorough update of commands for the symbolic computation programs Mathematica or Maple, as well as additional computer exercises. As with the Second Edition, this material supplements the content but no computer skill is necessary to take full advantage of this comprehensive text.

*Fortieth anniversary of publication! Over 36,000 copies sold worldwide
*Accessible, practical yet rigorous approach to a complex topic--also suitable for self-study
*Extensive update of appendices on Mathematica and Maple software packages
*Thorough streamlining of second edition's numbering system
*Fuller information on solutions to odd-numbered problems
*Additional exercises and hints guide students in using the latest computer modeling tools
Written primarily for students who have completed the standard first courses in calculus and linear algebra, Elementary Differential Geometry, Revised 2nd Edition, provides an introduction to the geometry of curves and surfaces. The Second Edition maintained the accessibility of the first, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis was placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard. This revision of the Second Edition provides a thorough update of commands for the symbolic computation programs Mathematica or Maple, as well as additional computer exercises. As with the Second Edition, this material supplements the content but no computer skill is necessary to take full advantage of this comprehensive text. Over 36,000 copies sold worldwide Accessible, practical yet rigorous approach to a complex topic--also suitable for self-study Extensive update of appendices on Mathematica and Maple software packages Thorough streamlining of second edition's numbering system Fuller information on solutions to odd-numbered problems Additional exercises and hints guide students in using the latest computer modeling tools

front cover 1
copyright 5
table of contents 6
front matter 10
Preface to the Revised Second Edition 10
Introduction 16
1: Calculus on Euclidean Space 18
1.1 Euclidean Space 18
1.2 Tangent Vectors 21
1.3 Directional Derivatives 26
1.4 Curves in R3 31
1.5 1-Forms 38
1.6 Differential Forms 43
1.7 Mappings 49
1.8 Summary 56
body 58
2: Frame Fields 58
2.1 Dot Product 58
2.2 Curves 67
2.3 The Frenet Formulas 73
2.4 Arbitrary-Speed Curves 84
2.5 Covariant Derivatives 96
2.6 Frame Fields 99
2.7 Connection Forms 103
2.8 The Structural Equations 109
2.9 Summary 114
3: Euclidean Geometry 115
3.1 Isometries of R3 115
3.2 The Tangent Map of an Isometry 122
3.3 Orientation 125
3.4 Euclidean Geometry 131
3.5 Congruence of Curves 136
3.6 Summary 143
4: Calculus on a Surface 145
4.1 Surfaces in R3 145
4.2 Patch Computations 154
4.3 Differentiable Functions and Tangent Vectors 164
4.4 Differential Forms on a Surface 173
4.5 Mappings of Surfaces 181
4.6 Integration of Forms 189
4.7 Topological Properties of Surfaces 199
4.8 Manifolds 208
4.9 Summary 216
5: Shape Operators 217
5.1 The Shape Operator of M R3 217
5.2 Normal Curvature 224
5.3 Gaussian Curvature 231
5.4 Computational Techniques 239
5.5 The Implicit Case 250
5.6 Special Curves in a Surface 255
5.7 Surfaces of Revolution 267
5.8 Summary 277
6: Geometry of Surfaces in R3 278
6.1 The Fundamental Equations 278
6.2 Form Computations 284
6.3 Some Global Theorems 288
6.4 Isometries and Local Isometries 296
6.5 Intrinsic Geometry of Surfaces in R3 304
6.6 Orthogonal Coordinates 309
6.7 Integration and Orientation 312
6.8 Total Curvature 319
6.9 Congruence of Surfaces 329
6.10 Summary 334
7: Riemannian Geometry 336
7.1 Geometric Surfaces 336
7.2 Gaussian Curvature 344
7.3 Covariant Derivative 352
7.4 Geodesics 361
7.5 Clairaut Parametrizations 368
7.6 The Gauss-Bonnet Theorem 379
7.7 Applications of Gauss-Bonnet 391
7.8 Summary 401
8: Global Structure of Surfaces 403
8.1 Length-Minimizing Properties of Geodesics 403
8.2 Complete Surfaces 415
8.3 Curvature and Conjugate Points 420
8.4 Covering Surfaces 431
8.5 Mappings That Preserve Inner Products 440
8.6 Surfaces of Constant Curvature 448
8.7 Theorems of Bonnet and Hadamard 457
8.8 Summary 464
back matter 466
Appendix: Computer Formulas 466
Bibliography 482
Answers to Odd-Numbered Exercises 483
index 510

Chapter 1


Calculus on Euclidean Space


As mentioned in the Preface, the purpose of this initial chapter is to establish the mathematical language used throughout the book. Much of what we do is simply a review of that part of elementary calculus dealing with differentiation of functions of three variables and with curves in space. Our definitions have been formulated so that they will apply smoothly to the later study of surfaces.

1.1 Euclidean Space


Three-dimensional space is often used in mathematics without being formally defined. Looking at the corner of a room, one can picture the familiar process by which rectangular coordinate axes are introduced and three numbers are measured to describe the position of each point. A precise definition that realizes this intuitive picture may be obtained by this device: instead of saying that three numbers describe the position of a point, we define them to be a point.

1.1 Definition


Euclidean 3-space R3 is the set of all ordered triples of real numbers. Such a triple p = (p1, p2, p3) is called a point of R3.

In linear algebra, it is shown that R3 is, in a natural way, a vector space over the real numbers. In fact, if p = (p1, p2, p3) and q = (q1, q2, q3) are points of R3, their sum is the point

The scalar multiple of a point p = (p1, p2, p3) by a number a is the point

It is easy to check that these two operations satisfy the axioms for a vector space. The point 0 = (0, 0, 0) is called the origin of R3.

Differential calculus deals with another aspect of R3 starting with the notion of differentiable real-valued functions on R3. We recall some fundamentals.

1.2 Definition


Let x, y, and z be the real-valued functions on R3 such that for each point p = (p1, p2, p3)

These functions x, y, z are called the natural coordinate functions of R3. We shall also use index notation for these functions, writing

Thus the value of the function xi on a point p is the number pi, and so we have the identity p = (p1, p2, p3) = (x1(p), x2(p), x3(p)) for each point p of R3. Elementary calculus does not always make a sharp distinction between the numbers p1, p2, p3 and the functions x1, x2, x3. Indeed the analogous distinction on the real line may seem pedantic, but for higher-dimensional spaces such as R3, its absence leads to serious ambiguities. (Essentially the same distinction is being made when we denote a function on R3 by a single letter f, reserving f(p) for its value at the point p.)

We assume that the reader is familiar with partial differentiation and its basic properties, in particular the chain rule for differentiation of a composite function. We shall work mostly with first-order partial derivatives ∂f/∂x, ∂f/∂y, ∂f/∂z and second-order partial derivatives ∂2f/∂x2, ∂2f/∂xy, … In a few situations, third- and even fourth-order derivatives may occur, but to avoid worrying about exactly how many derivatives we can take in any given context, we establish the following definition.

1.3 Definition


A real-valued function f on R3 is differentiable (or infinitely differentiable, or smooth, or of class C∞) provided all partial derivatives of f, of all orders, exist and are continuous.

Differentiable real-valued functions f and g may be added and multiplied in a familiar way to yield functions that are again differentiable and real-valued. We simply add and multiply their values at each point—the formulas read

The phrase “differentiable real-valued function” is unpleasantly long. Hence we make the convention that unless the context indicates otherwise, “function” shall mean “real-valued function,” and (unless the issue is explicitly raised) the functions we deal with will be assumed to be differentiable. We do not intend to overwork this convention; for the sake of emphasis the words “differentiable” and “real-valued” will still appear fairly frequently.

Differentiation is always a local operation: To compute the value of the function ∂f/∂x at a point p of R3, it is sufficient to know the values of f at all points q of R3 that are sufficiently near p. Thus, Definition 1.3 is unduly restrictive; the domain of f need not be the whole of R3, but need only be an open set of R3. By an open set of R3 we mean a subset of R3 such that if a point p is in , then so is every other point of R3 that is sufficiently near p. (A more precise definition is given in Chapter 2.) For example, the set of all points p = (p1, p2, p3) in R3 such that p1 > 0 is an open set, and the function yz log x defined on this set is certainly differentiable, even though its domain is not the whole of R3. Generally speaking, the results in this chapter remain valid if R3 is replaced by an arbitrary open set of R3.

We are dealing with three-dimensional Euclidean space only because this is the dimension we use most often in later work. It would be just as easy to work with Euclidean n-space Rn, for which the points are n-tuples p = (p1, …, pn ) and which has n natural coordinate functions x1, …, xn . All the results in this chapter are valid for Euclidean spaces of arbitrary dimensions, although we shall rarely take advantage of this except in the case of the Euclidean plane R2. In particular, the results are valid for the real line R1 = R. Many of the concepts introduced are designed to deal with higher dimensions, however, and are thus apt to be overelaborate when reduced to dimension 1.

Exercises


1. Let f = x2y and g = y sin z be functions on R3. Express the following functions in terms of x, y, z:

(a) fg2

(b)

(c)

(d)

2. Find the value of the function f = x2yy2z at each point:

(a) (1, 1, 1).

(b) (3, −1, ½.

(c) (a, 1, 1 – a).

(d) (t, t2, t3).

3. Express ∂f/∂x in terms of x, y, and z if

(a) f = x sin (xy) + y cos (xz).

(b) f = sin g, g = e h , h = x2 + y2 + z2.

4. If g1, g2, g3, and h are real-valued functions on R3, then

is the function such that

Express ∂f/∂x in terms of x, y, and z, if h = x2 – yz and

(a) f = h(x + y, y2, x + z).

(b) f = h(e z , e x+y , e x ).

(c) f = h(x, −x, x).

1.2 Tangent Vectors


Intuitively, a vector in R3 is an oriented line segment, or “arrow.” Vectors are used widely in physics and engineering to describe forces, velocities, angular momenta, and many other concepts. To obtain a definition that is both practical and precise, we shall describe an “arrow” in R3 by giving its starting point p and the change, or vector v, necessary to reach its end point p + v. Strictly speaking, v is just a point of R3.

2.1 Definition


A tangent vector v p to R3 consists of two points of...

Erscheint lt. Verlag 16.5.2006
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
Technik
ISBN-10 0-08-050542-2 / 0080505422
ISBN-13 978-0-08-050542-8 / 9780080505428
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 3,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 6,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich