Advances in Heat Transfer -

Advances in Heat Transfer (eBook)

eBook Download: PDF | EPUB
2006 | 1. Auflage
668 Seiten
Elsevier Science (Verlag)
978-0-08-046534-0 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
175,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Heat Transfer fills the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than in journals or texts. The articles, which serve as a broad review for experts in the field, will also be of great interest to non-specialists who need to keep up-to- date with the results of the latest research. It is essential reading for all mechanical, chemical and industrial engineers working in the field of heat transfer, graduate schools or industry.

* Provides an overview of review articles on topics of current interest
* Bridges the gap between academic researchers and practitioners in industry
* A long running and prestigious series
Advances in Heat Transfer fills the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than in journals or texts. The articles, which serve as a broad review for experts in the field, will also be of great interest to non-specialists who need to keep up-to- date with the results of the latest research. It is essential reading for all mechanical, chemical and industrial engineers working in the field of heat transfer, graduate schools or industry. Provides an overview of review articles on topics of current interest Bridges the gap between academic researchers and practitioners in industry A long-running and prestigious series

Cover 2
Contents 6
Contributors 12
Preface 14
Sonoluminescence and the Search for Sonofusion 16
Introduction 16
Discussion 20
Experimental Results and Considerations 32
Analytical Modeling 68
Potential Applications of Sonofusion Technology 112
Appendix A: Linear and Non-linear Bubble Cluster Dynamics 116
Appendix B: Transient Phenomena during Bubble Implosions in an Acoustically Driven, Liquid-Filled Flask 145
Appendix C: Nucleation of a Bubble in Tensioned Liquids Using High-Energy Neutrons 167
References 177
Phonon Transport in Molecular Dynamics Simulations: Formulation and Thermal Conductivity Prediction 184
Introduction 184
Conduction Heat Transfer and Thermal Conductivity of Solids 187
Real and Phonon Space Analyses 190
Nature of Phonon Transport in Molecular Dynamics Simulations 223
Thermal Conductivity Prediction: Green-Kubo Method 226
Thermal Conductivity Prediction: Direct Method 247
Discussion 256
Concluding Remarks 261
Acknowledgements 262
Nomenclature 262
References 263
Heat and Mass Transfer in Fluids with Nanoparticle Suspensions 272
Introduction 272
Experimental Studies and Results 279
Theoretical Investigations 325
Summary 383
References 385
The Effective Thermal Conductivity of Saturated Porous Media 392
Introduction 392
The Effective Thermal Conductivity 392
Small Solid–Fluid Conductivity Ratios 409
Intermediate Solid–Fluid Conductivity Ratios 415
Large Solid–Fluid Conductivity Ratios 430
Conclusion 467
Acknowledgment 468
Nomenclature 468
References 471
Mesoscale and Microscale Phase-Change Heat Transfer 476
Introduction 476
Meso-(Mini-)/Microdevices Involving Phase-Change Heat Transfer Processes 477
Meso- and Microscale Phase-Change Heat Transfer Phenomena 502
Concluding Remarks 571
Acknowledgments 571
References 571
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling 580
Summary 580
Introduction 580
Research Methods 603
Conclusions 624
Appendix: Correlation Reference 625
Nomenclature 640
References 641
Author Index 648
Subject Index 662

IV Analytical Modeling


A ANALYSIS OF BUBBLE DYNAMICS


As can be seen in Fig. 21, since they are in a highly superheat liquid and exposed to a negative pressure field (e.g., −15 bar), the cavitation bubbles start to grow rapidly. The bubbles are filled with vapor whose content changes with time due to evaporation/condensation kinetics. Bubble growth is slow relative to the speed of sound in vapor. Thus a low Mach number model, the extended Rayleigh equation, Eq. (1), may be used to describe the liquid and vapor motion during bubble growth [86,87,103]. As noted previously, the pressure inside the bubble is essentially uniform, although the temperature is not, and an incompressible model for the liquid adjacent to the interface may be used. The bubbles grow until increasing pressure in the liquid during the compression phase of the acoustic cycle arrests bubble growth and causes them to contract. At the beginning of bubble collapse, the velocity of the vapor/liquid interface is still small relative to the local speed of sound in vapor and the low Mach number model remains valid.

To model the latter stages of bubble implosion (and bubble rebound), a high Mach number, hydrodynamic shock code (i.e., HYDRO code) model, based on the full set of fluid dynamics conservation equations must be employed. This model can be derived using the “bubble-in-cell” model, which has been successfully used in many prior studies of bubble dynamics [86,87,104]. According to this scheme the entire region is divided into three zones, namely: (1) ≤r≤R(t) – the gas/vapor zone, where r is the radial coordinate and R(t) the bubble radius; (2) (t)≤r≤Rℓ(t) – the liquid boundary layer zone, filled with a compressible liquid, whose external radius ℓ(t) is larger than the bubble radii, but much smaller than the characteristic size of the acoustic chamber; (3) ℓ(t)≤r≤Rw – the liquid zone between the outer part of the cell (i.e., boundary layer zone) and the acoustic chamber wall (Rw). In this model, the radial velocity of the cell, ˙ℓ(t), is always small with respect to the speed of sound in the liquid. Therefore, the dynamics of ℓ(t) can be described by the generalized Rayleigh–Plesset equation, Eq. (1). Hence, it is necessary to conduct detailed calculations only in zones (1) and (2).

During bubble expansion, evaporation takes place keeping the vapor in the bubble almost at its saturation state. This leads to an almost constant vapor pressure. During the contraction stage, the vapor starts to condense. It is important to note that during bubble collapse non-equilibrium condensation takes place due to the thermal inertia. The faster the bubble implosion is, the farther the vapor is from thermodynamic equilibrium with the liquid, and higher the pressure and temperature of the vapor will be. When the temperature on the vapor side of the interface reaches the thermodynamic critical temperature, condensation ceases. From this moment on the bubble contracts as if it were filled with a “non-condensable vapor.” This phenomenon has been previously modeled and discussed by Akhatov et al. [104]. Hence, careful modeling of the evaporation/condensation process is important because it controls the amount of vapor, which is left in a collapsing bubble and will be involved in the subsequent compression process.

During implosion of the bubble, along with an almost adiabatic compression in the bubble’s interior, a shock wave, converging to the bubble’s center, may be generated. This shock wave ultimately compresses and heats a very small central part of the bubble. Vapor molecules in this region begin to dissociate, ionize and create a two-component, two-temperature fluid of ions and electrons, giving rise to plasma interactions.

The compression rate of the plasma is very high and the ion temperature increases rapidly. In contrast, as will be discussed in more detail subsequently, the electrons, which when ionization occurs, have essentially the same initial velocity as the ions, but much less mass, do not have enough time to exchange energy with the ions, and therefore stay relatively “cold” and thus have negligible impact on the energy and momentum of the plasma. In particular, the well-known energy loss mechanisms [105] associated with the electrons (i.e., Bremsstrahlung, line losses, recombination losses, etc.) are relatively small compared to those in laser-induced inertia confinement experiments [138]. Finally, the ion temperature and density reach conditions that are suitable for D/D thermonuclear fusion in a very small zone near the center of the collapsed bubble during a very short time interval. The neutron yield due to these thermonuclear fusion reactions may be calculated using the predicted, local, instantaneous thermal-hydraulic conditions and a suitable neutron kinetics model [105], Eq. (89).

It should be noted here that a realistic equation of state for the fluid, which accounts for the impact of vapor dissociation and ionization and liquid dissociation on the thermodynamic properties, is crucial in the theoretical predictions of experimentally observed sonofusion phenomena. Thus, we begin a discussion of the analytical model with a detailed description of the equation of state.

B EQUATIONS OF STATE


1 Equations of State for the Low Mach Number Period of Bubble Dynamics

During the low Mach number period of bubble dynamics, when the velocity of the interface is much less than the local speed of sound in vapor, the vapor density and pressure are not very high, and the vapor parameters satisfy the ideal gas equation of state

v=cvTv,pv=ρvRvTv,γv=(cv+Rv)cv

  (20)

where v,pv,Tv,εv,cv,Rvandγv are the density, pressure, temperature, internal energy, heat capacity, gas constant and adiabatic exponent of the vapor, respectively.

The liquid in the region around the bubble during the low Mach number period can be treated as nearly incompressible (i.e., linearly compressible), because its density does not deviate significantly from its initial value. In this case the liquid pressure, , is calculated from the equations of liquid motion and the liquid internal energy is

ℓ=cℓTℓ

  (21)

where ℓ,cℓ are temperature and heat capacity of the liquid, respectively.

According to thermodynamic matching conditions for the internal energies of the vapor and liquid on the saturation line, the following correction for vapor internal energy can be used [103]

v(ρvS(T),T)=hℓv(T)+pS(T)(1ρvS(T)-1ρℓS(T))+εℓ(ρℓS(T),T)

  (22)

where v(ρvS(T),T),εℓ(ρℓS(T),T),ρvS(T)andρℓS(T) are the values of the internal energy and density of vapor and liquid on the saturation line, respectively; S(T) is the saturation pressure and ℓv(T) the latent heat of vaporization.

2 Equations of State for the High Mach Number Period

During the high Mach number period, when the velocity of the interface is comparable to, or higher than, the local speed of sound in vapor, the vapor density and pressure during a bubble implosion may be very high, and the ideal gas equation of state, Eq. (20), is no longer valid. The liquid around a bubble is also highly compressed and heated, and the incompressible (or linearly compressible) approximation is no longer valid.

To describe the thermodynamic properties of the liquid, vapor and the condensed matter (i.e., supercritical) phases, the Mie–Grüneisen equation of state can be used [106,107]. In this model, the pressure and the internal energy of a fluid are treated as the sum of potential, or cold, (p,εp), and thermal, or hot, (T,εT), components.

=pp+pT,ε=eρ-v22=εp+εT+εc

  (23)

The cold, or potential components (p) quantity the short range atomic forces and are responsible for the elastic properties of the fluid and the hot, thermal components (T) quantify the effect of the oscillations of the atoms in a fluid [103,108112]. The so-called chemical component (c) quantifies the chemical binding energy.

The thermal components of pressure and internal energy can be written as

T=ρΓ(ρ)εT,εT=c¯vT

  (24)

where it may be assumed that the Grüneisen coefficient, ,depends only on fluid density , and the mean heat capacity, ¯v, is a constant.

In general, the internal energy of a fluid is the sum of the energy of the translational motion of the particles (i.e., molecules, atoms, ions and electrons), the rotational and vibrational energies of the molecules, the...

Erscheint lt. Verlag 17.10.2006
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-08-046534-X / 008046534X
ISBN-13 978-0-08-046534-0 / 9780080465340
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 11,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 21,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich