Advances in Pharmacology -

Advances in Pharmacology (eBook)

eBook Download: PDF | EPUB
1994 | 1. Auflage
361 Seiten
Elsevier Science (Verlag)
978-0-08-058119-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
54,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Each volume of Advances in Pharmacology provides a rich collection of reviews on timely topics. Emphasis is placed on the molecular basis of drug action, both applied and experimental.
Each volume of Advances in Pharmacology provides a rich collection of reviews on timely topics. Emphasis is placed on the molecular basis of drug action, both applied and experimental.

Front Cover 1
Advances in Pharmacology, Volume 28 4
Copyright Page 5
Contents 6
Contributors 12
Chapter 1. Regulation of Endothelial Cell Adhesion Molecule Expression with Antisense Oligonucleotides 14
I. Leukocyte Migration 14
II. Endothelial–Leukocyte Adhesion Molecules 16
III. Therapeutic Intervention of Leukocyte–Endothelial Cell Interactions 28
IV. Oligonucleotide Therapeutics 31
V. Inhibition of ICAM-1 Expression with Antisense Oligonucleotides 34
VI. Inhibition of E-Selectin and VCAM-1 Expression with Antisense Oligonucleotides 41
VII. Conclusions 41
References 42
Chapter 2. The Role of the L-Arginine: Nitric Oxide Pathway in Circulatory Shock 58
I. Introduction 58
II. Role of Nitric Oxide in Endotoxic Shock 60
III. Role of Nitric Oxide in Other Forms of Circulatory Failure 68
IV. Prevention of Nitric Oxide Synthase Induction 71
V. Inhibition of Nitric Oxide Synthase Activity 75
VI. Adverse Effects of Nitric Oxide Synthase Inhibition in Endotoxemia 78
VII. Conclusions 80
References 81
Chapter 3. Platelet-Activating Factor Antagonists: Scientific Background and Possible Clinical Applications 94
I. Introduction 94
II. The Effect of Platelet-Activating Factor 95
III. Specific Platelet-Activating Factor Receptor Antagonists 104
IV. Platelet-Activating Factor in the Inflammatory Response 121
V. Platelet-Activating Factor in Ischemic Disorders 141
VI. Platelet-Activating Factor in Other Pathophysiologic Disorders 149
VII. Clinical Studies with Platelet-Activating Factor Antagonists 154
VIII. Conclusions 156
References 158
Chapter 4. Therapeutic Implications of Delivery and Expression of Foreign Genes in Hepatocytes 182
I. Introduction 182
II. a1-Antitrypsin Deficiency 183
III. Familial Hypercholesterolemia 186
IV. Phenylketonuria 189
V. Urea Cycle Disorders 193
VI. Targeted Gene Delivery to Hepatocytes 196
VII. Isolating the Liver for Gene Transfer 199
VIII. Prospects 200
References 200
Chapter 5. Recombinant Toxins 206
I. Introduction to Pseudomonas Exotoxin and Diphtheria Toxin 206
II. Recombinant Toxins Containing Transforming Growth Factor a or Epidermal Growth Factor 209
III. Recombinant Toxins Containing Interleukin-6 212
IV. Recombinant Toxins Containing Interleukin-4 214
V. Recombinant Toxins Containing Interleukin-2 214
VI. Recombinant Immunotoxins 216
VII. Clinical Issues 223
References 224
Chapter 6. Therapeutic Potential of the Lazaroids (21-Aminosteroids) in Acute Central Nervous System Trauma, Ischemia, and Subarachnoid Hemorrhage 234
I. Introduction 234
II. Role of Lipid Peroxidation in the Injury Mosaic 235
III. Neuroprotective Effects of Methylprednisolone 242
IV. Neuroprotective Effects of the 21-Aminosteroids 243
References 274
Chapter 7. Angiotensin II Receptor Pharmacology 282
I. Introduction 282
II. Angiotensin Receptor Heterogeneity 283
III. The AT1 Receptor 292
IV. AT1 Binding Sites 305
V. Physiological Effects Mediated by AT1 and AT2 Receptors 308
VI. Conclusions and Future Directions 309
References 310
Chapter 8. New Developments in Macrolides: Structures and Antibacterial and Prokinetic Activities 320
I. Introduction 320
II. New Clinically Useful Macrolide Antibacterials 322
III. Advances in Mode of Action Studies 326
IV. Mechanisms of Resistance 328
V. Advances in Antimicrobial Therapeutic Uses 330
VI. Prokinetic Activity 336
VII. Summary 344
References 346
Index 358
Contents of Previous Volumes 366

Regulation of Endothelial Cell Adhesion Molecule Expression with Antisense Oligonucleotides


C. Frank Bennett; Stanley T. Crooke    Department of Molecular Pharmacology ISIS Pharmaceuticals Carlsbad, California 92008

I Leukocyte Migration


Leukocyte emigration through postcapillary venules is an active process requiring an orchestrated interaction of a number of proteins with their respective ligands (Fig. 1). Best characterized is the migration of neutrophils through endothelium in response to inflammatory stimuli. Neutrophil emigration can be categorized into at least three distinct steps, reversible adhesion, leukocyte activation, and stable binding (Butcher, 1991). Intravital microscopy was used more than 100 years ago to describe these steps (Cohnheim, 1889). In the past few years, some of the molecular interactions which occur during this process have been characterized. The first step which is observed is rolling of leukocytes along endothelium. Rolling of leukocytes on the surface of vascular endothelium requires transient attachment to and detachment from the endothelium. For the process to be efficient, the ligands which mediate this transient attachment should not exhibit high affinities for their binding proteins. Rolling has been demonstrated to be due to increased expression of P-selectin and E-selectin on the vascular endothelium, both of which interact with carbohydrates, such as sialyl Lex on circulating neutrophils (Lawrence and Springer, 1991). In addition, L-selectin on the neutrophil may also participate in the rolling process.

Fig. 1 Steps in leukocyte emigration. Migration of leukocytes out of the vasculature requires multiple interactions between molecules expressed on leukocytes and molecules expressed on endothelial cells. The first step, rolling, is mediated by binding of P-selectin and/or E- selectin on the endothelium to complex carbohydrate structures such as sialyl Lex, or alternatively L-selectin to carbohydrates on the endothelium. Activation of leukocytes results in a change in avidity of LFA-1, Mac-1, and VLA-4 for their respective ligands on endothelium, ICAM-1, ICAM-2, and VCAM-1. On binding ICAM-1, ICAM-2, or VCAM-1 the leukocyte stops rolling on the surface of the endothelium. The leukocyte sends out pseudopodia which insert between cellular junctions migrating to the substratum underneath, which is dependent on the β2-integrins and ICAM-1.

Neutrophils undergo an “activation” event in response to soluble stimuli such as chemotactic peptide, leukotriene B4, platelet-activating factor, or interleukin 8, cell matrix-associated cytokines or through interactions with proteins expressed on endothelial cells (Butcher, 1991; Tanaka et al., 1993). On activation, dramatic changes in the shape of neutrophils can be observed with the cells becoming flattened and exhibiting pseudopodia. In addition, the avidity of the neutrophil proteins leukocyte function- associated antigen-1 (LFA-1) and Mac-1 for their ligand intercellular adhesion molecule 1 (ICAM-1) increases, resulting in stable binding to the endothelium (Dustin, 1990). T cells have also been demonstrated to undergo activation resulting in enhanced binding of LFA-1 to ICAM-1 (Dustin and Springer, 1989). This activation of binding is thought to be due to phosphorylation of the β-subunit of either LFA-1 or Mac-1 (Hibbs et al., 1991). In most instances, transendothelial migration requires CD18 and ICAM-1 (Furie et al., 1991; Oppenheimer-Marks et al., 1991). Although vascular cell adhesion molecule 1 (VCAM-1) may play an important role in the initial binding of some leukocyte types to the endothelium, VCAM-1 does not appear to play a role in transendothelial migration (Oppenheimer- Marks et al., 1991; Ebisawa et al., 1992). This conclusion is supported by the finding that VCAM-1 is expressed on the apical surface of endothelial cells, while ICAM-1 is present on both the apical and basal surface of endothelial cells as well as expressed at intracellular junctions.

II Endothelial-Leukocyte Adhesion Molecules


There has been much progress in defining and characterizing the macro molecules responsible for the adhesive interactions between leukocytes and vascular endothelium and characterizing their role in normal homeostasis. Members of at least three multigene families are involved as well as unique carbohydrate structures and additional poorly characterized molecules (Table I). In addition, there are several proteins identified by use of monoclonal antibodies which function in lymphocyte adherence and migration into specialized lymphoid structures which have currently unknown primary sequences (Picker, 1992). A brief discussion regarding the better-characterized proteins involved in leukocyte migration follows.

Table I

Endothelial-Leukocyte Adhesion Molecules

ICAM-1 Keratinocytes, fibroblasts Immunoglobulin 4 to 72 hr LFA-1, MAC-1 Lymphocytes, monocytes, granulocytes
ICAM-2 Activated lymphocytes Immunoglobulin Constitutively LFA-1 Lymphocytes, monocytes, granulocytes
VC AM-1 Dendritic cells Immunoglobulin 4 to 72 hr VLA4 Lymphocytes, monocytes
E-Selectin No Selectin 2 to 12 hr Sialyl Lex Granulocytes, monocytes
Sialyl Lea Memory T cells
P-Selectin Platelets Selectin 5 min to 2 hr Sialyl Lex Granulocytes, monocytes

A Immunoglobulin Family


The immunoglobulin gene superfamily is a large family of proteins which have in common one or more 90 to 100 amino acid domains, characterized by two antiparallel β-pleated sheets usually held together by a disulfide bond (Williams and Barclay, 1988). Although members of this family are functionally diverse, most are cell-surface proteins involved in recognition of other molecules. This recognition can be either homophilic or heterophilic. The genetic loci coding for members of the immunoglobulin gene superfamily are found on multiple chromosomes. Three members of the immunoglobulin gene family are expressed on endothelial cells and are involved in leukocyte emigration and activation, ICAM-1, ICAM-2, and VCAM-1, with a fourth member, ICAM-3, expressed on leukocytes.

ICAM-1 was identified by use of a monoclonal antibody which recognized a heavily glycosylated cell-surface protein of 90 to 110 kDa, distinct from LFA-1, expressed at low levels on unstimulated endothelial cells and circulating leukocytes (Dustin et al., 1986; Rothlein et al., 1986). Expression of ICAM-1 was found to be markedly elevated in response to interleukin 1 (IL1), tumor necrosis factor (TNF), interferon-γ (IFN’γ), and bacterial lipopolysaccharide (LPS) in a wide variety of cells including endothelial cells, keratinocytes, fibroblasts, and astrocytes.

ICAM-1 has five extracellular immunoglobulin-like domains, a 27 amino acid signal sequence, a putative 24 amino acid transmembrane domain, and a short 28 amino acid cytoplasmic domain (Simmons et al., 1988; Staunton et al., 1988). The gene for ICAM-1 is located on chromosome 19 and consists of seven exons, with each of the immunoglobulin domains coded for by separate exons. The transmembrane domain, cytoplasmic domain, and the 3’-untranslated region are all contained in the last exon (Voraberger et al., 1991). The mRNA encoding ICAM-1 is approximately 3.0 kb in length, containing a long 1400 nucleotide 3’-untranslated region. The 3’-untranslated region of ICAM-1 mRNA contains three repeats of AUUUA sequence which have been proposed to confer instability to mRNAs containing such sequences (Caput et al., 1986). Several proteins have been identified that bind selectively to these AUUUA sequences; however, their function in mRNA stability is still unknown (Bohjanen et al., 1991; Vakalopoulou et al., 1991). Human ICAM-1 exhibits 50% homology to mouse and rat ICAM-1 (Siu et al., 1989; Horley et al., 1989; Kita et al., 1992).

ICAM-1 binds to circulating leukocytes via interactions with the β2- integrins LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) (Marlin and Springer, 1987; Diamond et al., 1990). Binding to LFA-1 has been mapped to the first immunoglobulin domain while binding to Mac-1 occurs at a distinct site on the third immunoglobulin domain (Staunton et al., 1990; Diamond et al., 1990, 1991). Studies suggest that binding to Mac-1 may be regulated in part by the glycosylation state of domain 3, with deglycosylated forms exhibiting more pronounced binding. In contrast, binding to LFA-1 does not appear to be influenced by glycosylation (Diamond et al., 1991). ICAM-1 has also been shown to bind CD43, also known as sialophorin or leukosialin...

Erscheint lt. Verlag 6.7.1994
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Medizin / Pharmazie Gesundheitsfachberufe
Medizin / Pharmazie Medizinische Fachgebiete Pharmakologie / Pharmakotherapie
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-08-058119-6 / 0080581196
ISBN-13 978-0-08-058119-4 / 9780080581194
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 20,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 9,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich