Advances in Applied Mechanics -

Advances in Applied Mechanics (eBook)

eBook Download: PDF | EPUB
2009 | 1. Auflage
346 Seiten
Elsevier Science (Verlag)
978-0-08-092154-9 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
175,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The major developments in the fields of fluid and solid mechanics are scattered throughout an array of technical journals, often making it difficult to find what the real advances are, especially for a researcher new to the field or an individual interested in discovering the state-of-the-art in connection with applications. The Advances in Applied Mechanics book series draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas such as aerospace, chemical, civil, environmental, mechanical and nuclear engineering. Advances in Applied Mechanics continues to be a publication of high visibility and impact. Review articles are provided by active, leading scientists in the field by invitation of the editors. Many of the articles published have become classics within their fields. Volume 42 in the series contains articles on coarse-graining in elasto-viscoplasticity, elasticity at nano-scale, and elestic and conductive properties of heterogeneous materials.

.Covers all fields of the mechanical sciences
.Highlights classical and modern areas of mechanics that are ready for review
.Provides comprehensive coverage of the field in question
The major developments in the fields of fluid and solid mechanics are scattered throughout an array of technical journals, often making it difficult to find what the real advances are, especially for a researcher new to the field or an individual interested in discovering the state-of-the-art in connection with applications. The Advances in Applied Mechanics book series draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas such as aerospace, chemical, civil, environmental, mechanical and nuclear engineering. Advances in Applied Mechanics continues to be a publication of high visibility and impact. Review articles are provided by active, leading scientists in the field by invitation of the editors. Many of the articles published have become classics within their fields. Volume 42 in the series contains articles on coarse-graining in elasto-viscoplasticity, elasticity at nano-scale, and elestic and conductive properties of heterogeneous materials. Covers all fields of the mechanical sciences Highlights classical and modern areas of mechanics that are ready for review Provides comprehensive coverage of the field in question

Front Cover 1
Advances in Applied Mechanics 4
Copyright Page 5
Contents 6
Preface 8
Chapter 1 Theory of Elasticity at the Nanoscale 10
Abstract 11
1. Introduction 11
2. Eshelby Formalism for Nano-inhomogeneities 15
3. Application of Eshelby Formalism for Nano-inhomogeneities 28
4. Micromechanical Framework for Nano-inhomogeneities with Interface Stress 39
5. Application of Micromechanical Framework for Nano-inhomogeneities 43
6. Scaling Laws for Properties of Nanostructured Materials 66
7. Conclusions 71
Acknowledgment 72
References 72
Chapter 2 Connections between Elastic and Conductive Properties of Heterogeneous Materials 78
Abstract 80
1. Introduction 81
2. Overview of Existing Approaches to Cross-property Connections 83
3. Quantitative Characterization of Microstructures: General Considerations 104
4. Materials with Isolated Inhomogeneities: Microstructural Parameters for the Effective Elasticity and Effective Conductivity 111
5. Explicit Cross-property Connections for Anisotropic Two-phase Composites 142
6. Cross-property Connections for Anisotropic Inhomogeneities 164
7. Applications of Cross-property Connections to Specific Materials Science Problems 191
8. Contact of Rough Surfaces: The Elasticity–Conductivity Connection 219
9. Plastic Yield Surfaces of Anisotropic Porous Materials in Terms of Effective Electric Conductivities 234
10. Conclusions 247
A. On Approximate Character of Elastic and Conductive Anisotropies 248
B. Tensor Basis for Transversely Isotropic Fourth-rank Tensors 250
C. Series of Associated Elliptic Functions and Relevant Equations 253
Acknowledgment 255
References 255
Chapter 3 Coarse Graining in Elasto-viscoplasticity: Bridging the Gap from Microscopic Fluctuations to Dissipation 262
Abstract 263
1. Introduction 266
2. GENERIC Framework of Nonequilibrium Thermodynamics I. Fundamentals 268
3. Applications of the GENERIC Formalism 272
4. GENERIC Framework. II. Methodology of Coarse Graining 288
5. Applications of the Coarse-graining Procedure 297
6. Discussion 317
Acknowledgments 321
A. Calculations Related to Hydrodynamics (Section 3.3) 321
B. Derivation of L(Faß,u. )(r, .) in Eq. (5.12) 322
References 323
Subject Index 328

4 Micromechanical Framework for Nano-inhomogeneities with Interface Stress


The interface stress contributes to the effective moduli of composites in two ways. First, it affects the average stress (strain) in each inhomogeneity, and this effect can be taken into account by the use of the so-called stress (strain) concentration tensor in the inhomogeneity (cf. Section 2.2). Second, the discontinuities in the traction across the interface directly participate in the calculation of the volume average of the strain or stress, and this effect can be taken into account by use of the stress (strain) concentration tensor at the interface. The effective moduli of solids with interface stress effect can be modelled with the well-known micromechanical schemes, provided these are suitably modified to account for the discontinuity in the tractions across the interfaces. For example, Benveniste (1985) has given the general framework with consideration of the displacement discontinuity, and Hashin (1991) has used this framework to predict the effective moduli of composites with linear spring interfaces (displacement discontinuity). In view of the importance of the surface/interface stress effect at the nanoscale, a framework has been proposed by Duan et al. (2005b) to include stress discontinuity in order to take into account the surface/interface stress effect.

Many micromechanical schemes have been successfully used for obtaining effective elastic constants of heterogeneous solids. For a comprehensive exposition, one can refer to the monographs of Aboudi (1991), Nemat-Nasser and Hori (1999), Milton (2002), and Torquato (2002). For the prediction of the effective properties of nonlinear composites, one can refer to the works of Ponte Castañeda and Suquet (1998) and Willis (2000). For the sake of simplicity but without loss of the physical essence of the surface/interface stress effect, we shall use three schemes to predict the effective elastic constants of solids containing nanoinhomogeneities with the surface/interface stress effect described by Eqs. (2.2) and (2.6). The three schemes are Hashin’s composite sphere assemblage model (CSA; Hashin, 1962), the Mori–Tanaka method (MTM; Mori and Tanaka, 1973), and the generalized self-consistent method (GSCM; Christensen and Lo, 1979).

Consider a representative volume element (RVE) consisting of a two-phase medium occupying a volume V with external boundary S, and let VI and Vm denote the volumes of the two phases ΩI and Ωm, respectively. The interface stress effect is taken into account at the interface Γ with outward unit normal n between ΩI and Ωm. The heterogeneous material is assumed to be statistically homogeneous with the inhomogeneity moduli CI (compliance tensor DI) and matrix moduli Cm (compliance tensor Dm). fI and (1 – fI) denote the volume fractions of the inhomogeneity and matrix, respectively. To define the effective elastic moduli of a composite, we use the usual concept of homogeneous boundary conditions imposed on a RVE. As in the work of Benveniste and Miloh (2001), we define the average strain ¯ and average stress ¯ as follows:

¯=12V∫SN⊗u+u⊗NdS,

  (4.1)

¯=1V∫Sσ⋅N⊗xdS,

  (4.2)

where N is the outward unit normal vector to S, and x is the position vector. In the presence of interface stress effect (stress discontinuity), the average strain and average stress are

¯=1−fIε¯m+fIε¯I,

  (4.3)

¯=1−fIσ¯m+fIσ¯I+fIVI∫Γσ⋅n⊗xdΓ,

  (4.4)

where ¯k and ¯k (k = I, m) denote volume averages of the strain and stress over the respective phases in the RVE. [σ] = σIσm. As usual, the effective elastic moduli of the composite can then be determined by subjecting the external surface S to homogeneous displacement or traction boundary conditions, defined as

S=ε0⋅x,

  (4.5)

S=σ0⋅N,

  (4.6)

where ε0 and σ0 are constant strain and stress tensors, respectively.

In the following, we will first derive formulas relating the average stress (strain) in the inhomogeneities and at the interface to the applied stress (strain) under both types of boundary condition (4.5) and (4.6). These formulas are needed to calculate the effective moduli of the composite according to the dilute concentration approximation and GSCM schemes. It is easy to derive formulas relating the average stress (strain) in the inhomogeneities and at the interface to the average stress (strain) in the matrix, again under both types of boundary condition (4.5) and (4.6). These formulas are needed in MTM.

Under homogeneous displacement boundary conditions Eq. (4.5), define a strain concentration tensor R in the inhomogeneity and a strain concentration tensor T at the interface such that

¯I=R:ε0,1VI∫Γσ⋅n⊗xdΓ=Cm:T:ε0

  (4.7)

From Eqs. (4.3)(4.5) and (4.7), the effective stiffness tensor ¯ of the composite is given by

¯=Cm+fICI−Cm:R+fICm:T.

  (4.8)

Under homogeneous traction boundary conditions Eq. (4.6), define two stress concentration tensors U (in the inhomogeneity) and W (at the interface) by the relations

¯I=U:σ0,1VI∫Γσ⋅n⊗xdΓ=W:σ0.

  (4.9)

Then the effective compliance tensor ¯ of the composite is given by

¯=Sm+fISI−Sm:U−fISm:W.

  (4.10)

Eqs. (4.8) and (4.10) can be used to calculate the effective moduli of composites by using the dilute concentration approximation and GSCM once R, T, U, and W have been obtained. If the inhomogeneity and matrix are both isotropic, and the composite is macroscopically isotropic, then R and T in Eq. (4.7) can be expressed as

=R1J1+R2J2,T=T1J1+T2J2

  (4.11)

in which

1=13I2⊗I2,J2=−13I2⊗I2+I4s

  (4.12)

with I(4s) the fourth-order symmetric identity tensor. R1, R2, T1, and T2 are four scalars to be determined from the adopted micromechanical scheme. Then Eq. (4.8) decouples into

¯=κm+fIκI−κmR1+κmT1,

  (4.13)

¯=μm+fIμI−μmR2+μmT2.

  (4.14)

Let us now relate the average stress (strain) in the inhomogeneity and the average stress difference at the interface to the average stress (strain) in the matrix, following the Mori–Tanaka procedure (Benveniste, 1987). Under the homogeneous displacement boundary conditions Eq. (4.5), define two strain concentration tensors M (in the inhomogeneity) and H (at the interface) by the relations

¯I=M:ε¯m,1VI∫Γσ⋅n⊗xdΓ=Cm:H:ε¯m,

  (4.15)

where ¯m=I4s+fM−I4s−1:ε0. Then the effective stiffness tensor can be obtained from

¯=Cm+fICI−Cm:M+Cm:H:I4s+fIM−I4s−1.

  (4.16)

Likewise, under the homogeneous traction boundary conditions Eq. (4.6), the effective compliance tensor can be obtained from

¯=Sm+fISI−Sm:P+Sm:Q:I4s+fIP+Q−I4s−1.

  (4.17)

where P and Q are stress concentration tensors in the inhomogeneity and at the interface, respectively. They are defined by

¯I=P:σ¯m,1VI∫Γσ⋅n⊗xdΓ=Q:σ¯m,

  (4.18)

where ¯m=I4s+fIP+Q−I4s−1:σ0. Eqs. (4.16) and (4.17) can be used to...

Erscheint lt. Verlag 18.6.2009
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Naturwissenschaften Physik / Astronomie Mechanik
Naturwissenschaften Physik / Astronomie Strömungsmechanik
Technik Maschinenbau
ISBN-10 0-08-092154-X / 008092154X
ISBN-13 978-0-08-092154-9 / 9780080921549
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 3,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 8,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
die klassischen Feldtheorien in moderner Darstellung

von Wolfgang H. Müller; Elena N. Vilchevskaya

eBook Download (2024)
Carl Hanser Fachbuchverlag
39,99